跬智信息:⾦融⾏业指标中台精选案例(59页).pdf
融业 指标中台精选案例 Copyright 2022 Kyligence USA,Inc.Kyligence and the Kyligence logo are registered trademarks of Kyligence USA,Inc.in the United States and/or other countries.All other brands and names are the property of their respective owners.All rights reserved.Visit us at kyligence.io.版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 录【银篇】【银篇】.5 5 、平台先,引领创新:建数据技术的探索与运.5 1、技术底座.5 2、技术平台.6 3、技术组件创新.8、从零售之王看银数字化转型的运营之道.13 1、什么是数字化转型的关键撑点?.13 2、数据赋能业务临哪些挑战?.13 3、零售之王数字化运营的落地实践.14 三、Kyligence 助平安银打造统指标平台.26 1、为什么要打造统指标平台?.27 2、为什么选择 Kyligence?.27 3、潘多拉指标平台的创新与应.27 4、潘多拉指标平台项成效.29 四、指标中台助银业普惠融可持续发展.31 1、普惠融业务及特.31 2、开展涉农普惠融临的挑战.32 3、以 Kyligence 指标中台为基础,效助该业务健康、持续发展.33 五、Kyligence 助城商信卡中搭建业务指标体系,打造全场景数据服务能.37 1、业背景.37 2、公司现状和痛点.37 3、Kyligence 应场景 解决案.37 4、客收益.39 六、Kyligence 助力重庆银行获 IDC FinTech 突破奖认可.40 1、为什么选择 Kyligence?.40 2、统数据智能分析平台的项架构.40 3、创新案与应.41 七、打造智慧银家,提升业务团队精益化经营管理平.43 1、企业简介.43 2、项背景.43 3、Kyligence 应场景 解决案.44 4、收获的成效.46【保险篇】【保险篇】.4747 、Kyligence 助泰康数据驱动保险机构精细化运营.47 1、业背景.47 版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 2、保险业现状和痛点.47 3、Kyligence 应场景 解决案.47 4、获得的成效.49 九、世界 500 强险企建设指标驱动的经营分析系统.50 1、业现状及痛点.50 2、Kyligence 应场景 解决案.50 3、收获的成效.54、数字化经营底座助寿险业转型.56 1、数据驱动保险业精细化运营.56 2、寿险业数据分析的挑战及解决案.57 版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 5【银篇】、平台先,引领创新:建数据技术的探索与运 基于 Kyligence 的云化数据服务撑了 60 多个应,均查询量超过 15 万笔。建已经逐步从技术的使者变为技术的创造者,以新技术驱动融场景的创新。”建信科数据智能研发部总经理 数据技术的发展,带来了存储、计算成本的降低和体验的提升,推动了建数字化的进程。建技术框架分成三层,技术底座、技术平台和技术组件。!1、技术底座 1.1 为什么提出“技术底座”概念 版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 6 应越来越复杂,如个数据应会涉及数据、智能等多种技术,原来技术平台多是按照技术领域建设,通过技术底座能够让各技术平台实现应构建标准的统。1.2 技术底座的本质是更贴近应的技术和服务 技术底座是云计算架构的北向迁移,本质上更贴近应的技术服务。云计算是基础设施的范畴,提供计算、存储、络资源,的是资源共享,从达到降低资源成本、提升使效率的的。技术底座是云计算架构下的技术底座是云计算架构下的 aPaaS aPaaS 技术服务,实现技术快速落地以及规模化应。技术服务,实现技术快速落地以及规模化应。1.3 技术底座的构成 技术底座以建融科技的战略“TOP ”中规划的 ABCDMIX 技术为核,包括数据、智能、区块链等,在这些技术之上撑全应的开发和运。l 对研发的持对研发的持:提供了向研发的具、框架、艺以及形成的开发服务、测试服务;l 对产的持对产的持:向产运提供的监控、处置以及运维服务、运营服务,撑应的稳定运。!如果给技术底座个定义,就是向开发和运员,提供开发框架、技术引擎、程序接、具组件、规范开发框架、技术引擎、程序接、具组件、规范艺艺等系列资源的集合。2、技术平台 2.1 平台概况 版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 7 建直以平台化的思路进信息系统建设,平台化能够让各类技术更好的融合,更便捷的撑应建设。技术技术平台通过对技术能封装和整合,降低技术应槛,为应提供效研发和稳定运的持。平台通过对技术能封装和整合,降低技术应槛,为应提供效研发和稳定运的持。建前有七个技术类平台,内部称为“北七星”。随着技术的发展,还会有更多平台出现,重点介绍其中三个:l 数据平台数据平台(天璇):提供数据采集、处理、分析和挖掘,数据管理和可视化分析等数据能;l 智能平台智能平台(天权):提供 AI 建模、标注、以及 AI 算的供给;l 区块链平台区块链平台(天枢):提供可信数据共享,信息存证及交易溯源等能。在平台的撑下建实现了许多应,包含融类应,例如控、营销;态类应,如住房租赁、养扶贫;对外输出类应,服务战略客。2.2 数据云平台 数据云平台从 2018 年开始建设,参考了互联的数据技术,并结合建近 20 年的数据经验打造的融级数据平台。实现九能,包括数据采集、集成、存储计算、数据管理、数据开发、数据分析挖掘、数据服务、数据安全运营、资源调度,基本覆盖数据价值全链路的开发和运基本覆盖数据价值全链路的开发和运。在这些能之上,平台提供了三类服务:l 资源服务资源服务:提供实时计算,批量计算、图计算等环境和资源,这些服务都是云化版本,应可以快速搭建所需的基础环境;l 具服务具服务:提供了数据采集、加、分析等具,应可以快速进数据处理;l 数据服务数据服务:数据平台提供了在线的元数据管理、数据录、数据服务总线等功能,便对外的数据服务。版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 8 3、技术组件创新 3.1 存算分离的数据引擎 存储计算分离技术不是新概念,但是好不容易。建数据平台从建设之初就把存储计算分离作为重要的标。建数据平台从建设之初就把存储计算分离作为重要的标。技术上已经实现多套 MPP 集群将数据存放在统的对象存储上。为了保证存储效读写,在存储层增加了速缓存,实现底层不同存储的协议适配,另实现缓存加速。对于不同的数据计算引擎,论 Spark 做海量分析,还是 MPP 进数仓加,或者 HAWQ 作湖仓体的处理,都能便的获取底层数据,并实现数据的共享。为了让不同计算引擎间的数据能够相互识别,进了引擎间的元数据打通,如让 MPP 获取 Hive 表存放的位置和表结构,所有引擎实现数据互访,将不同引擎的优势形成合。版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 9 到前为,建已经上线建已经上线 10000 10000 节点的云化节点的云化 MPP MPP 引擎,实现引擎,实现 60 60 多个集群共享同个存储,共享的数据量多个集群共享同个存储,共享的数据量10PB10PB。这种云化的存算分离的 MPP 数据库在资源供给、故障恢复、节约存储、计算资源,传统的 GreenPlum 数据库有很优势。平台还提供了基于 MPP on Hadoop 技术的湖仓体引擎,可以直接读取数据湖的 HDFS 件,并以 MPP 的式进加,更加符合原来开发员的习惯。3.2 基于 Kyligence 的云化数据服务 Kyligence 在建做了深度应,包括:版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 10 l Kyligence Kyligence 在数据云平台做了云化适配在数据云平台做了云化适配,实现租隔离、弹性伸缩、动化部署等,并和其他技术组件,如数据管理、数据服务等进了效集成和对接;l Kyligence Kyligence 与与 ClickHouse ClickHouse 实现了融合验证,提供统的实现了融合验证,提供统的 OLAP OLAP 能能,在 Kyligence 性能聚合分析能之外,利 Clickhouse 扩展了明细分析、Ad-Hoc 查询等场景的性能;l Kyligence Kyligence 的新特性的新特性,如 AI 预计算、智能路由、读写分离等在建做了深度验证,取得了不错的效果。前 Kyligence 集群从申请到交付只需要 2 个时,存储和访问节点数量有 900 ,Cube 处理的数据量有 1PB,固定查询能够实现亚秒级响应,BI 分析可以做到秒级返回,已经持 60 多个应,每天通过 Kylin 接的查询量有 15 万笔。3.3 双态数据研发模式 建数据平台持稳态研发和敏态研发两种模式。稳态研发的开发和产资源物理隔离稳态研发的开发和产资源物理隔离,测试数据需要从产同步,开发上线有严格的管控流程,适合传统的数据加场景。敏态模式则更适合数据分析和敏态模式则更适合数据分析和 AI AI 建模类应建模类应,在这种模式下,开发和产资源在统的基础设施上,通过云化技术划分为测试环境和产环境(内部称为 Offline 和 Online)。数据,在统的数据基础上,提供了测试数据视图和产数据视图;应,提供了在线开发和部署,提升了数据研发效率。敏态研发模式在融业不仅是技术上的突破,更是研发流程上的创新,从这点能看出建在新技术、新模式的探索下了很决。前敏态研发模式已经在全部分和集团公司上线推。3.4 数据隐私计算 建数据隐私组件采“集中管理集中管理 分布计算分布计算”的架构,集中的管理节点负责数据管理、任务调度等核功能,真正的计算在各计算节点上完成,这种架构兼顾了数据安全性和易性。数据隐私计算使了区块链技术对计算过程进存证,能够还原整个计算过程,可以对其进监管审计。版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 11 建内外部都有很多数据隐私计算的场景应。在集团内部,总和建信基进联合建模来分析不同客群对营销活动的响应度。通过对每类客群进联合建模和单边建模,对两者数据,联合建模下的 AUC 平均提升10.4%,KS 最提升 200%。最后,把模型评分前 15%的客群做实际营销,各客群营销效果最提升 30 多倍,定位准确率最提升 50%,标客群覆盖率达到 90%。在外部,建和上海数据中合作,实现遗产关怀的场景,以及和银联、多个省政府合作,在微信贷、裕农扶贫等开拓创新的场景。3.5 数据智能化技术 在数据智能化应,建在计算机视觉、然语处理、知识图谱、智能推荐等技术领域都有创新建在计算机视觉、然语处理、知识图谱、智能推荐等技术领域都有创新,如和国家卫星资源中以及各地的地产权部合作,通过卫星遥感图象做地权确认和农作物势分析,在产量估算精确度能够达到 90%。再如智能审单领域,研了 NLP 和 ICR 算法,把图象特征处理和本特征处理放在个模型中,使单据识别的准确度和速度都提升了个台阶。通过智能化技术的运,实现了更多数据价值的挖掘通过智能化技术的运,实现了更多数据价值的挖掘和业务创新。和业务创新。3.6 数据技术信创国产化 建在数据技术信创国产化在加速推进,今年会完成数据云平台的信创国产化作。建在数据技术信创国产化在加速推进,今年会完成数据云平台的信创国产化作。明年的重点是数据具的国产化,利信创的契机,逐渐把国外软件替换为主可控的软件。之后规划形成融业领先的数据信创能,通过不断完善技术,加速融业信创的进程。3.7 前沿技术的预研 为了持续保持技术领先,建在很多前沿技术上提前布局,与众多企业、校、研究机构进产学研合作。如成性能数据处理实验室,研究基于 Hadoop 的事务性处理;成量融实验室,在抗量加密和融定价 版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 12 进研究,今年已经推出国内批量融算法,包括“量期权定价”与“量险价值计量”,是国内融领域对量计算加速能的次尝试;与清华学成“声纹 ”联合技术创新中,研究声纹识别技术在融领域的应。总的来说,建在数据技术领域的研究投很,特别是建信科成后,逐步“从技术的使者变为技术的创造者”,标是打造主领先的融科技,新技术驱动融场景的创新。同时希望以新技术带动研发流程、数模式的升级,让数据价值更快释放。期待与更多的业界领先公司合作,共同创造多元化场景,共享融科技的成果。版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 13、从零售之王看银数字化转型的运营之道 服务这家领先银五年来,Kyligence 智能多维数据库现已覆盖该 20 业务场景,实现业务主数超 95%,降低了数槛。Kyligence 创新的产品及解决案和持续专业的数字化运营助该以数据赋能业务,不断深化数字化转型。”1、什么是数字化转型的关键撑点?2012 年数字化转型这概念被正式提出,年后的今天,从传统的制造、物流、零售等业,再到融、互联等业,数字化转型已经成为了各各业的泛共识,各企业都将数字化转型提升到了战略层。放眼全球,世界各国竞相将发展数字经济作为抢抓新轮科技命和产业变新机遇的重要抓,我国经济发展要保持在全球经济领先地位,需要不断引新常态的增模式,数字化转型不再是选择题,是关乎企业存和远发展的“必答题”。对于企业,数字化转型不可能蹴就,是需要进期的投和持续的运营。对于企业,数字化转型不可能蹴就,是需要进期的投和持续的运营。企业引进某种先进的技术或者平台其实只是开始,要想真正深数字化转型,还需要完善的法论撑以及持续的平台建设运营,才能更好地服务业务,实现的增与发展。(本的数字化运营指的是对企业内部数字化系统及平台的建设和运营)处数字化转型前列的融业,已经有部分银率先出了的数字化运营之道,本将试图从银业普遍的数字化转型痛点谈起,以零售之王的落地实践为例,深分析其数字化运营的历程和收益,希望可以给家带来些启发。2、数据赋能业务临哪些挑战?数字化转型之初,部分银往往是从 IT 部或者业务部的度出发,采购或研某个系统或具来解决特定的问题;但随着数字化转型的不断深,银的数字化系统也随之增多,从总到分,从数据程师/数据分析师再到线业务员,使数据的槛好像越来越。银的数据资产缺乏效的管理和运营,数据法真正实现共享、复和开放,反带来了重重困难:l 受制于传统技术架构,难以盘活受制于传统技术架构,难以盘活数据资产数据资产:传统的技术架构中,IT 部更像是数据的“搬运”,从业务系统到数据仓库/数据湖等平台,掌握了量的企业数据,但由于缺乏业务场景的撑,业务员难以深了解数据内在价值,导致数据难以沉淀为资产;版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 14 l 信息孤岛和数据壁垒问题严重,法实现数据连通信息孤岛和数据壁垒问题严重,法实现数据连通:数据是数字化经营的核基础,然现状是银内部之间、内外部之间的数据均存在壁垒,缺少“以客为中”的数据协调和统规划,造成了总/分业务间数据孤岛;l 传统架构法满快速响应和敏捷分析传统架构法满快速响应和敏捷分析:业务部数据分析需求与俱增,业务员希望查询即查即出,且可随意进数据探索,传统关系型数据库 BI 的案难以撑,甚影响了业务决策;l 经验法沉淀,资产不能被复制和共享经验法沉淀,资产不能被复制和共享:总有较好的数据分析环境和经验,分析员有丰富的分析经验,但是分析经验法被沉淀和传递,分析员之间、部之间、总分之间资源很难复,导致资产不能很好得被共享和转移;l 数据时效性差,跟不上市场环境的变化数据时效性差,跟不上市场环境的变化:从数据加到线业务员的上,整个过程曲折且流程过,为了保障数据的安全性还需重重审批,数据开发周期,难以满业务员助式分析需求,且存在开发运维、管理成本过等问题。那么,对数字化运营的重重困难,在转型前沿的零售之王是如何解决的?接下来,我们将从标、历程、那么,对数字化运营的重重困难,在转型前沿的零售之王是如何解决的?接下来,我们将从标、历程、运营实践、收益等谈谈零售之王如何将数字化运营落地,释放数据的价值。运营实践、收益等谈谈零售之王如何将数字化运营落地,释放数据的价值。3、零售之王数字化运营的落地实践 零售之王的 CIO 曾在接受媒体采访时提到:“如何最新的科技段去解决问题?如何科技的段,不断提升客的体验?关键是让信息传递变得扁平化、效流转,降低数据使的槛,让数据赋能业务。”3.1 以降低数槛,数据赋能业务为标 为此,该银最初定下了以下标:进步降低全的数槛,除了专业的数据分析师、数据科学家以外,让更多的线业务员可以助使数据服务,数据驱动决策,刺激业务的增;通过系统融合带动业务融合,打破现有以部为中的业务系统竖井,构建统多维数据分析平台,从底层打通总分的数据和系统,提供可快速复制和共享服务的资源,服务总分的数字化运营标;赋能员以数字化式提升作效能,减少 IT 部在重复性作上的投,实现数据的效管理,维护系统持续稳定的运营。3.2 历时三年,服务内近百个租,MAU 实现从百级到万级的突破 版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 15 为了更好地实现数据赋能业务,该银打造了以多维分析平台为技术底座的数据中台层,为业务分析员提供低槛的数据分析环境。其构建分析环境的底座概经历了启动、成、拓展、创新四个阶段,逐步形成了其前数字化运营的法论和体系:图 1 统多维分析平台的发展阶段 启动阶段:这阶段该银以架构设计和架构集成为标,启动阶段:这阶段该银以架构设计和架构集成为标,完成了整体的架构设计,实现与原有架构的融合。在不影响现有业务的情况,Kyligence 产品与企业架构进了缝集成:下与数据平台的融合,充分利数据的存储和计算能,将数据进预构建;上 与 BI 展 现 平 台 的 缝 对 接,Kyligence 作 为 BI 平 台 的 统 查 询 ,实 现 与 TableauCognosMSTRMIP(管理信息平台)等友好集成,将数据分析能赋予各个应系统;与元数据管控平台、ETL 调度、研 BI 设计器等周边组件进融合。版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 16 图 2 Kyligence 与企业架构的融合 成阶段成阶段:这阶段以平台能建设为标这阶段以平台能建设为标,银逐步建设和完善了平台的可视化分析、灵活助分析、租管理、权限管理等能,满多维、明细、实时等多种查询场分析场景,并在范围的业务场景中进试点,如绩效平台、画像平台、管理信息平台等多个应对接,承载现有的业务流量,MAU 数量达到百级。图 3 撑业务分析服务 版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 17 拓展阶段:这个阶段以场景拓展为标,不断探索适宜的业务场景,并开拓展阶段:这个阶段以场景拓展为标,不断探索适宜的业务场景,并开展相应的推和培训活动。展相应的推和培训活动。经过第阶段的范围试点取得的经验和成果,引/吸引了更多的部加,同时将数据开放给总、分、团队、客经理等。Kyligence Kyligence 承载内对私和对公两业务,已为全承载内对私和对公两业务,已为全 20 20 多个部室、多个部室、80 80 租提供数据分析服务。租提供数据分析服务。图 4 拓展业务场景 创新阶段创新阶段:这个阶段以稳中求进,开拓创新为标这个阶段以稳中求进,开拓创新为标。先,在现有平台的基础上,不断完善平台的智能化能,提升系统的稳定性、查询性能、数据时效性、成本管理等价值服务;其次,在基于逐渐完善的数据中台上,根据市场变化不断探索创新,建设更加完整的数字化运营态平台。图 5 数字化运营态 版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 18 在启动阶段到成熟阶段的过程中,银业务规模和数据规模均在不断扩。Hadoop 构建集群规模从最初的个节点增到数百个节点数百个节点,数据规模更是从数百 TB 增到近近 2 PB2 PB,每数据增就达到上百上百 TBTB;随着该平台的不断运营和推,使数不断增加,Kyligence Enterprise 实例从开始个节点扩展到个节点,模型数量从最初的两位数增到 700 700 ,已覆盖了 20 20 业务场景。3.3 平台持续运营:覆盖 20 业务场景,业务主数超 95%随着数字化转型的深,银的业务需求不断增加,数据和应开发也成暴涨性增。在建设多维分析平台的过程中,银也需要持续加强对数据资产的管理,同时提升平台的运营能,以便承接更多的业务需求。在服务零售之王及其他领先银的过程中,Kyligence 总结了多维分析平台建设和运营的系统法论。接下来,我们从场景、架构、开发、运维、优化和推等起看零售之王如何在三年内,通过持续的运营和推,覆盖 20 业务场景,实现业务主数超 95%。场景场景 正如“当其”,企业引个产品需要依照定的标准对其进系统性的评估,才能知其、避其短,在合适的业务场景发挥它的优势。企业可以根据业务的内在特性、受众群体、时效等因素,去衡量多维分析平台能否满其要求。在零售之王的实际案例中,经过系列的评估,其在多维分析平台上部署了公司融、零售信贷、零售融、私银、险管理以及信卡等业务领域,前为内 20 多个部室,80 租提供了数据分析服务。架构架构 对于全架构的“家庭”来说,Kyligence 多维数据库快速融,并成为提升数据平台价值的员猛将。Kyligence 多维数据库的设计严格遵循 REST API 格,从使其与内的系统更容易集成,甚可在 Kyligence 产品上进次开发,内的系统需重新进架构调整,确保了内架构的主性。内原有的 BI 产品可通过不同的标准接与 Kyligence 多维数据库友好对接,Kyligence 多维数据库则作为内 BI 平台统的查询,将数据分析能赋予给管理信息系统、管理驾驶舱、对公 CRM 等各个应系统,各应系统通过统标准即可与 BI 产品对接,充分发挥应系统的数据分析能,提升业务的体验。Kyligence 架构设计上采了读写分离部署模式,运多租的管理式,使得不同的开发及业务部在相互不扰的情况下,能够共同套多维分析环境,做到了租间的资源隔离,同时 IT 开发模式和数据访问模式可共份数据,避免了数据的迁移。统多维分析平台通过 Kyligence 多维数据库加速引擎预计算数据,以及 Spark 查询预计算结果,从使得基于 Hadoop 的分析查询性能变得更加快速,且持并发的业务场景。版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 19 图 6 多维分析平台架构 开发开发 统多维分析平台为开发员提供了规范易的数据开发环境,建了开发、评审、上线等流程,制定了健全的开发规范。为了保障产环境稳定性,平台还建了套完成的上线流程,从开发到集成测试,再到 UAT 测试,经过严格的上线评审,才能最终上线部署到产环境。图 7 应开发流程 版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 20 运维运维 该平台完善了元数据的采集和管理,建了平台运营的指标体系,通过这些指标可以为模型评分、运维监控、成本管理等提供数据撑;通过存储和计算资源指标可以对平台成本进管理,计算每个数据产品的成本消耗,实现成本的精细化管理;通过版本管理,可以加强版本升级的计划管理和价值管理,提升业务服务的连续性和稳定性,建预警机制和应急预案,保障系统的持续稳定运。图 8 平台运维可视化 优化优化 随着银对该平台的使不断深,平台的流量也在不断增,对平台的稳定性、查询响应时间、数据时效性都常关注,任何个指标的下降都可能引发的不满。同时,流量的增加,也必然带来存储、计算等资源的增加,在保障体验不下降的情况下,需要进相应资源的扩容,导致 IT 成本不断增加,因此成本优化必不可少。论查询性能、时效性还是资源问题,单靠扩容是“治标不治本”,若要从根源解决问题,就需要运套之有效的优化法,先找到病因,再对其下药,能药到病除。版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 21 图 9 Kyligence 性能管理体系 推推 统多维分析平台的搭建和运营,最终是为了服务更多银的线业务员,因此推是数字化运营中常重要的环。该银主要采取了以下式进内部的推和赋能:l 产品技术和业务场景分享产品技术和业务场景分享:多次在内部开展产品技术、业务场景的讨论和分享,让内 IT 和业务员逐步熟悉 Kyligence 多维数据库在数据平台中的分析能;l 定期培训定期培训:通过对内的开发部进产品的介绍,宣讲开发标准和规范培训,让开发员能够熟悉掌握多维分析平台的使技巧,让内更多的员懂得如何运 Kyligence 多维数据库的能提升开发效率。l 案例分享案例分享:通过打磨个个案例,并将优秀案例发表在内技术刊上,让各分及部都了解统多维分析平台的价值,吸引更多的业务加到该列中。经过这三年的不断建设运营与推,统多维分析平台的 MAU 累计活跃数从 2017 年的 200 迅速增 2 2万万 ,助服务达到近近 3 3 千千,均的业务访问量达到三百多万笔三百多万笔,业务的占超过95%,真正降低了的使槛,逐步实现了数据的平化。版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 22 图 10 活跃数量增趋势图 总之,平台建设运营并蹴就,是项持续性的活动。企业需要有套体系化的运营法论作为撑,再逐步构建完整的数据服务能。Kyligence 在实践中不断总结实施经验,构建了套完整的平台建设运营法论,并将这套法论运在实践中,不断打磨符合业的建设运营法论,将理论与实践结合,助多家领先银推进数字化转型。图 11 Kyligence 平台建设运营法论 Kyligence 多位客通过参考这法论,构建了统、规范、可共享的全域数据体系,避免数据的冗余和重复建设,规避烟囱式建设和不致性,提供统的业务语义,降低数据分析的槛,打破原有竖井式的分析模式,实现了全域的数据分析能。3.4 收益:查询性能提升万倍,开发成本下降 15%以上 版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 23 前,该银展开了运营、内容运营、场景运营以及培训赋能等四个的运营措施,持续推动了总分数据应态建,全提升总分的主数平,使其能有效赋能业务;据不完全统计,截前,基于数据中台为总分建了上万张报告上万张报告,这些报告近七成都是业务部主建设近七成都是业务部主建设。!图 12 统多维智能分析平台 Kyligence 统多维智能分析平台助该银实现了:l 盘活数据资产,为总数据分析员提供盘活数据资产,为总数据分析员提供:制定全数据统径、营销管理数据分析、经营数据分析及报表的制作与发布等,实现数据价值整合。l 实现数据连通,为分数据分析员提供实现数据连通,为分数据分析员提供:个性化数据径处理、获客和客群经营数据分析、分报表制作与发布以及录数据的导等服务,使得分可与总数据进融合,实现了资源的共享。l 实现性能敏捷分析,为数据消费员提供实现性能敏捷分析,为数据消费员提供:性能、并发、敏捷的数据分析环境,实现业务报表查询秒级响应,以及灵活的助分析能。l 实现资产可复制共享,为数据消费员提供实现资产可复制共享,为数据消费员提供:从数据准备到共享的系列服务,不断沉淀数据分析经验,实现资产的快速复制和共享。l 降低数槛,为数据消费员提供降低数槛,为数据消费员提供:更容易理解、更熟悉的业务语,解决业务员的数难问题,提供易操作、时效、稳定的数据分析平台,使得业务员可快速准确地查看数据报表、订阅、分享及下载等服务,满不同业务的需求。版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 24 图 13 业务数据分析模式的变 经过这年的平台运营,截 2021 年底,统多维智能分析平台已为全统多维智能分析平台已为全 40%的业务员提供低槛的数据分的业务员提供低槛的数据分析服务析服务,据不完全统计已收获如下成果:l 降低重复事务,释放产降低重复事务,释放产:全机房维护单同下降下降 45E%,将 IT 员从繁琐的重复性事务中释放出来,同时数据提取的效率从原先 5 天缩短 1 时,效率提升了百倍效率提升了百倍,使得分析员可以将更多的精聚焦在数据价值上。l 提效,缩减开发资源提效,缩减开发资源:提升报表开发效率,报表开发周期从原先的5 5 天天缩短到1 1 天天,研发报表开发投资源下降幅度超下降幅度超 15%。l 缩短数据分析周期,提升体验缩短数据分析周期,提升体验:数据分析的平均周期也从 5 个作下降时级时级,幅提升了数据分析效能,数据分析的效率从原先的 24 时级缩短到 10 秒内,查询性能提升了近万倍查询性能提升了近万倍,极提升业务的体验。版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 25 图 14 业务应场景 前,该银已经将 Kyligence 多维分析平台的能运到常的经营活动,如经营分析、业务专题分析、客画像、画像、考核业绩账单、每存款通报、营销获客等业务场景;同时利移动 APP 让管理层、业务中台、团队、客经理等员可以随时随地查看数据报告,了解业务最新的经营情况,进钻取、上卷、不同维度旋转等动态分析,随时随地为他们的想法或决策提供数据撑,让数字化运营真正落地,服务全的业务增。版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 26 三、Kyligence 助平安银打造统指标平台 在平安银潘多拉指标管理和应平台的建设过程中,基于 Kyligence 的 AI 增强建模功能,实现全命周期的指标动化构建和管理,显著提升了数据开发产能和对数据进了有效的治理,帮助业务更简单更便捷地进数据分析和业务洞察,并对内其他依赖数据的系统提供中台撑。”平安银零售数据平台技术总监!数字银的突破,离不开前沿科技的驱动。数字银的突破,离不开前沿科技的驱动。平安银依托智能、数据、云计算等领域的核技术,不断将新技术深度植到经营决策和融服务全流程,实现数字化、智能化业务运营和经营管理。对于平安银来说,对于平安银来说,数据赋能业务的关键在于降低使数据的槛。那么如何让使数据变得简单?数据赋能业务的关键在于降低使数据的槛。那么如何让使数据变得简单?让我们起来看看 Kyligence 如何助平安银打造站式数据服务平台潘多拉指标平台的吧 版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 27 1、为什么要打造统指标平台?平安银认为要想降低使数据的槛,先应当以指标的治理为切点,因为指标是企业最核、最重平安银认为要想降低使数据的槛,先应当以指标的治理为切点,因为指标是企业最核、最重要的数据资产。要的数据资产。平安银通过打造统的指标访问平台,基于前沿的智能化技术快速整合、展现、治理和共享价值的指标资产,打破了以往业务提需求,业务提需求,IT IT 做开发做开发的被动响应模式,从让业务能够主动、快速地找到需要的业务指标,或者基于现有的指标快速派新的指标。此外,系统还能动匹配和推送有价值的指标给业务员,让使数据变得简单和效。2、为什么选择 Kyligence?对于指标平台的技术架构来说,指标加和查询引擎是核组件。对于指标平台的技术架构来说,指标加和查询引擎是核组件。在引擎选型的过程中,平安银对了多种业界主流的计算引擎,包括 Hive,Spark,Impala,Druid,ClickHouse,Flink,Kyligence 等,最终从 Hadoop Hadoop 态兼态兼容性容性、数据量数据量、查询延迟查询延迟、查询灵活性查询灵活性、QPSQPS 五综合评估,认为 Kyligence 能够满指标的加和查询需求,它能够通过分布式的计算和存储进指标的加,基于 AI 增强引擎,实现智能化的计算和运维,显著节省开发的成本,还能满跨主题分析的需求。另外,尤为重要的是,尤为重要的是,Kyligence Kyligence 有本地化团队提供有本地化团队提供专业的技术持专业的技术持和服务和服务。3、潘多拉指标平台的创新与应 版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 28 潘多拉指标平台是平安银指标管理和指标应的统平台。潘多拉指标平台是平安银指标管理和指标应的统平台。该平台以业务场景为驱动,提供了 AI BI 内容的基础能,并结合组件化开放平台,提供数据分析与应的站式解决案:l 内容内容:提供了指标、维度和标签的录、发布和规范化管理的能;l BI BI:提供了指标卡、指标地图、指标看板、指标派与衍等功能;l AI AI:建了可插拔的智能预警、规则预警、智能归因、指标推荐等功能。潘多拉指标平台为银亿级数据量级下多维分析提供了完整的解决案,解决了以往数据开发周期数据开发周期、数据径数据径杂杂、数据获取难数据获取难、查询响应慢查询响应慢等痛点。通过 Kyligence 独创的智能查询路由与构建技术,平台可按需构建 Cube,并动管理相应的任务调度、跑批队列、命周期以及查询下压等任务,既满业务灵活应指标的需求,也有效降低了开发运维成本。版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 29 平台利指标卡,让指标真正活起来,让可以更直观的找到指标、使指标平台利指标卡,让指标真正活起来,让可以更直观的找到指标、使指标;通过简单强的指标看板功能,让普通业务员也能轻松制作看板、分析数据,减少对数据开发员的依赖;结合向业务场景的 AI 算法,让可以更简单更便捷的开展更深层次的分析。4、潘多拉指标平台项成效 通过近年的建设,平台初步形成了以构建服务构建服务、查询服务查询服务、数据治理数据治理和 AI AI 能能为核的中台能:l 构建服务构建服务:提供了数据查询的动视图构建、Kyligence 的 Cube 动构建、任务的智能任务管理、智能资源队列等功能,实现指标模型的动化构建实现指标模型的动化构建;l 查询服务查询服务:提供异步查询、主被动缓存、降级下压、智能聚合等功能,满数据量多维查询场景下快速响快速响应应与灵活分析灵活分析的需求;l 数据治理数据治理:以边使边治理边使边治理的理念为驱动,提供指标、维度、数据时效等的治理功能,提升数据规范性、减少指标和维度的义性,提升数据管理平;l AI AI 能能:平台以业务场景为导向,围绕指标应,提供了算法的接能,前已接智能预警、规则预警、智能归因、指标推荐等算法,帮助更快定位问题,开展分析。在此基础上,平台还为第三提供了开放组件,可提供算法特征、数据交换、可视化组件、组件查询接等服务,进步赋能数据应,提升效率。平安银:潘多拉指标平安银:潘多拉指标平台平台改变了数据的常开发模式,以及业务的数据应模式,降低了数据开发的成本,提升数据应的效率:版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 30 l 数据开发周期平均缩短了 3 3-5 5 天;l 数据报表开发耗费减少 300%;l 常规需求替换率达到 25%以上。前该平台接指标 40004000 余个,维度 500500 余个,基本覆盖各业务条线核指标和分析维度;在线看板 600600余个,均 UV 1500 1500 ,均 PV 30000 30000 。版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 31 四、指标中台助银业普惠融可持续发展 普惠融普惠融是国家重要战略之,在普惠融中应数据技术,能进步提升普惠融的服务质效,助微企业的持续发展。这家国有型商业银基于这家国有型商业银基于 Kyligence Kyligence 产品及解决案,搭建了统的指标中台产品及解决案,搭建了统的指标中台,以效的指标治理推动数据治理,利先进的数据技术实现数字化经营、提业务协同效率,助其普惠融业务的健康、稳定发展。”1、普惠融业务及特 2015 年,国务院印发推进普惠融发展规划(2016-2020 年),次将普惠融纳国家战略规划,并提出做好微、确切有幸福感的融,有利于每个、每个企业实现的梦想。年来,在国家政策的持下,普惠融已经有效提了融服务的覆盖率、可得性和满意度,让更多百姓享受到了便捷、合理、安全的融服务。作为国有型商业银,这家领先银认真贯彻党和国家决策部署,主动承担责任,全启动普惠融战略。该银“涉农、扶贫”的普惠融服务(以下简称“普惠融”)是在县域乡村指定合作商服务点布放银卡受理终端设备或“普惠融”APP,向借记卡持卡提供助农取款、现汇款和余额查询、转账汇款、代理缴费等服务功能。向“涉农、扶贫”重点客群,该银为解决乡村地区融产品服务供给不充分等痛点,以互联思维、轻资产新模式快速延伸县域乡村地区服务触;通过搭建起县域普惠融共享服务平台,提供“融 融服务”,满乡村振兴多样化、多层次的融需求,打通了融服务“三农”最后公,提升了该县域乡村服务能。1.1 融合场景、提供丰富融产品 涉农普惠融业务的特是通过不断深化与场景的融合,持续丰富服务态。前该已完成活缴费、社保医疗、社区服务和农业产四类特类服务场景的接和部署。围绕“存贷汇缴投”为县域乡村客提供特助农取款、专享聚财、涉农保险等 30 项产品功能。在总的持下,普惠融促进了多个分的业在总的持下,普惠融促进了多个分的业务场景创新,落地了多项特融产品,持续推进务场景创新,落地了多项特融产品,持续推进“三农三农”融服务。融服务。1.2 深三合作、探索业务开拓模式 涉农普惠融业务不仅具有助农取款、快贷、汇款等传统的功能,该还积极与第三合作,探索“普惠融 ”的业务开拓模式,借助第三的资源为客提供便缴费、健康饮、农业资讯等融服务,成为该推动普惠融服务络深腹地、助乡村振兴的重要载体。例如,与某物联公司共同打造的“普惠融 顺乐农”乡村普惠融服务平台,村除办理融服务外,还可享受健康饮、上问诊、定制化产品购买等融服务。版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 32 2、开展涉农普惠融临的挑战 该逐步开展涉农普惠融业务以来,就认识到其关键在于“涉农普惠融”APP 的专业化运营。通过上述业务特的介绍,家知道了涉农普惠融业务的显著特征是:基于的真实活需要,与泛的第三渠道合作,基于的真实活需要,与泛的第三渠道合作,融合服务场景,提供便利的融产品等融合服务场景,提供便利的融产品等。“涉农普惠融”APP 则是该业务的重要载体,其实际运中主要临如下个的挑战及数据需求:2.1 如何提信贷审批效率,灵活响应需求 如何通过建设数字化政务(包括精兵简政),提为百姓办事的效率是开展涉农普惠融的重要需求之。如何通过建设数字化政务(包括精兵简政),提为百姓办事的效率是开展涉农普惠融的重要需求之。涉农普惠融的资需求额度不,资通常于常农业产运营、扩规模或短期资周转等;另农及相关微企业的资需求较灵活,往往不能等待较时间。尤其是疫情以来,很多微企业临倒闭险,如果这时候能够成功融资,将会对微企业的死存亡起到关重要的作。然,传统的信贷审批对农和微企业融资,审批速度不够友好,因此这也是涉农普惠融业务需要重点解决的问题。2.2 如何精准分配资源,促进业务规模增 开展涉农普惠融还需利数据挖掘农及关联微企业,进资源的精准分配,更好助业务的可持续发开展涉农普惠融还需利数据挖掘农及关联微企业,进资源的精准分配,更好助业务的可持续发展。展。从银整体的度出发,随着时间推移,银对普惠融业务的投会逐渐加,但是将资源分配到各分后,就显得捉襟肘了。虽然涉农普惠融是项政策导向的业务,但银作为盈利机构,也要考虑健康、可持续的发展。如何充分利这万个服务点,深挖掘农及关联微企业,实现业务规模增就成了该业务健康可持续发展的关键。2.3 如何提和的联动效率,联动资源整合发展 以数据为基础,更好联动普惠融部与各之间的资源、整合发展是开展涉农普惠融临的挑战。以数据为基础,更好联动普惠融部与各之间的资源、整合发展是开展涉农普惠融临的挑战。传统微企业贷款审批模式具有较限制,各的客经理进客开发,对相关客的业务往往只能推荐办理,再由分普惠融部专审批,才能够最终确定贷款额度和放款时间,普惠融部对审批慎之慎的态度,使得很多客的贷款审批实际上得不到效和额对待,虽然提供相应抵押物,但“过不了关”的情况仍然常多。因此,普惠融部与各之间,如何有效提升联动效应,是银提普惠业务发展效率和提升规模的关键因素。2.4 如何利指标,实现多效协同 利数据利数据/指标协同普惠相关合作或业,更精准、效地发展是开展涉农普惠融的关键。指标协同普惠相关合作或业,更精准、效地发展是开展涉农普惠融的关键。涉农普惠融于场景,牵涉到供销社、通信公司、电商平台、卫系统、服务、住房租赁等众多合作。如何与各合作效协同,打造好服务农及相关微企业的场景?这需要转变思路,从 APP 运营的度优化好每个业务环节,提业务办理的体验和效率。版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 33 3、以 Kyligence 指标中台为基础,效助该业务健康、持续发展 该基于多年数据建设的丰富经验,认为要想解决上述挑战,需要搭建套统、共享、标准、效的数据分析体系,利先进的数据技术实现数字化经营、对内外部各信息、提业务协同效率。作为该的重要合作伙伴,Kyligence 结合业内数据建设情况的研究和多年项实践的积累,与该展开深的探讨和研究,双认为要解决涉农普惠融所临的上述挑战,套清晰、合理、效的指标体系及分析平台双认为要解决涉农普惠融所临的上述挑战,套清晰、合理、效的指标体系及分析平台是基础是基础,才能逐步实现以数据驱动涉农普惠融业务全、健康、可持续增的标。指标中台是套复杂的系统,其不仅包括内部的各业务条线、渠道、职能部等各种指标体系,还涉及到与外部合作平台的数据打通,同时需要科学设计底层数据治理、平台及管理系统、运营监控系统、指标的各种应和指标管理等。结合结合 Kyligence Kyligence 在搭建指标中台及系统的最佳实践,考虑到在复杂的业务和关系中,我们建议以在搭建指标中台及系统的最佳实践,考虑到在复杂的业务和关系中,我们建议以指标体系的规划为切点、以指标的开发与治理为抓。此外,个强的数据平台底座,也是确保指标体系指标体系的规划为切点、以指标的开发与治理为抓。此外,个强的数据平台底座,也是确保指标体系的良性运转和效数据治理的关键。的良性运转和效数据治理的关键。3.1 梳理套全、清晰的指标体系 考虑到涉农普惠融的业务价值链较为复杂、合作机构众多,指标体系的搭建是拉通各动的关键所在。Kyligence Kyligence 基于业先进实践和项积累,提供了套科学的法论框架,帮助该梳理规划套清晰、合基于业先进实践和项积累,提供了套科学的法论框架,帮助该梳理规划套清晰、合理、效的指标体系。理、效的指标体系。这套框架包含 OSM、UJM 和业务场景化三个相互配合的法论组成:先通过 OSM(Objective-Strategy-Measurement)使业务标结构化,然后融合 UJM(User-Journey-Map)使体验流程化,并之反哺、校准业务标,最后通过将业务场景模块化,使整个指标体系快速落地。整个法论框架如下图所:3.2 坚实的 Kyligence 指标中台底座 版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 34 基于 Kyligence 产品打造的指标中台底座,已经在国内多个型银成功落地和推,服务了各总分的管理员、数据程师以及业务员,前指标中台架构如下图所:得益于 AI 增强的性能分析引擎、统 SQL 服务接、业务语义层等能,Kyligence 提供成本最优的多维数据分析能和丰富的指标体系建设经验,有利于该进规模的应和推:l Al Al 增强的智能指标引擎增强的智能指标引擎:实现指标的智能建模、动加计算,幅降低指标 ETL 开发作量,提升指标开发与上线效率;l 性能全场景的性能全场景的 OLAP OLAP 引擎引擎:保证各类指标查询的秒级响应,保障数体验,实现指标深度分析与洞察;l 统的语义层统的语义层:基于集市模型实现上下径统的数据语义层,基于维度实现指标的穿透式分析;同时提供各类数据查询服务接,如 SQL、MDX、RESTAPI 等,更好对接各类指标应;l 全的全的 API API 集成接集成接:持与现有的数据管理、调度、安全等组件缝集成,迅速构建企业统的指标中台。3.3 效的指标运营和数据治理机制 得益于坚实的 Kyligence 指标中台底座,该可以基于前沿的智能化技术快速整合、展现、共享和治理价值的指标资产,打破传统银“业务提需求,IT 做开发”的被动响应模式,从让业务能够主动、快速地找到需要的业务指标,或者基于现有的指标快速派新的指标。此外,系统还能动匹配和推送有价值的指标给业务员,让使数据变得简单和效。在本项中,该平台充分发挥了如下项优势:l 基于智能多维数据库的质量数据集成!版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 35 根据该涉农普惠融业务的特点,本项在数据整合的法上以数据集市及指标为中。以数据集市及指标为中。通过这样的多维集市能够为上层的指标提供更好的能,同时也有利于更好地跟上下游合作,确保端到端数据链路的质量平。l AI 引擎驱动的智能化指标加 传统的数据平台对 ETL 依赖重,造成了 IT 团队资源消耗居不下,需求响应速度慢。Kyligence 指标中台通过 AI 增强引擎学习的分析模式,推荐或识别出最合适的数据模型,并进步推荐出模型可以承载的指标,通过系统动化地完成指标的加作通过系统动化地完成指标的加作。l 效的数据治理 版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 36 在本项中,Kyligence 指标中台通过推动指标治理来做到更好的数据治理通过推动指标治理来做到更好的数据治理。只有指标被使、被消费,数据才能发挥更的价值。Kyligence 指标中台规范了该指标径的管理,如重复的指标、异动的指标,还有些空值分布的异常等,都能在指标管理模块中实现动的监控和治理。在数据时效,通过指标保障级别的设置,系统可以动在后台调整资源和调度,保证对应指标的 SLA(Service Level Agreement/服务级别协议)。3.4 Kyligence 3.4 Kyligence 助涉农普惠融的健康、持续发展助涉农普惠融的健康、持续发展 在 Kyligence 指标中台解决案的助下,这家领先银已实现:l 对涉农普惠融业务的敏捷数据应撑对涉农普惠融业务的敏捷数据应撑,新的数据应开发上线从过去以为单位提速到周以内,使得该项业务在开展过程中能够敏捷地作出调整以适应农及微企业的需求;l 在农业、农村的扶贫和乡村振兴中,该银的指标体系有效撑了扶贫资源的精准分配和致富商机的发现,助该项业务的规模增;l 统的指标体系和效的数据治理统的指标体系和效的数据治理,提升了该内各部、各地和外部合作的协同效率,从有效地解决了贷款审批速度、深挖掘农/微企业等难题,实现了业务的健康、持续发展。从全盘度看,该项业务近年来保持了良好的发展势头,截 2021 年 6 累计拓展服务点 22.422.4 万万个,覆盖了全国31 个省市区,乡村覆盖率超过 333%,各地政府承接的定点扶贫村覆盖率达 98.85.85%,服务点规模持续扩,县乡渠道覆盖显著提,实现了实现普惠融的稳健推进,助社会经济的稳健发展。作为数据基础领域软件公司的领先者,截 2021 年,跬智信息(Kyligence)已拥有多项国内外专利以及软著认证,掌握数据基础设施的核技术。前公司已通过联合实验室式与中国银联达成深度合作,共建创新型融数据服务,进步研究数据平台的国产化替换等课题,致于为中国各各业提供主可控、性能、质量的数据基础软件。版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 37 五、Kyligence 助城商信卡中搭建业务指标体系,打造全场景数据服务能 Kyligence 作为数据指标引擎,助城商信卡中搭建业务指标体系,并为数据查询提供加速功能以及智能优化,改变了传统数据应开发模式。这模式的改变,极地提升了业务数的体验、业务业绩复盘以及业务市场策略制定。”城商信卡中 BI 团队负责 1、业背景 当数字付进新时代,消费需求益多元化,信卡的零售数字化转型成为重要趋势。如何构建统的数据视图,深度挖掘数据价值,撑各级业务团队进效的经营管理,已成为信卡业临的个现实挑战。2、公司现状和痛点 随着城商信卡中的信卡业务的发展和市场竞争加剧,业务部常的业务开展需要量的报表数据撑精细化运营,以及从多个维度来分析业务经营情况。该城商信卡中从 2018 年开始搭建助分析平台,现已覆盖市场、险、财务、资等业务部,持上述业务部助分析数据。近两年随着业务增,以及新业务的出现,现有助分析平台难以效满多表、数据量的灵活助分析。主要临如下挑战:l 开发成本,交付周期:开发成本,交付周期:所有指标需要定制开发,耗费,如开发 100 个衍指标需要 2-3;由于缺乏可视化指标配置的指标计算引擎,指标开发速度跟不上业务的节奏,法撑时效性、周期短的营销活动等场景的分析;l 查询响应慢,并发持弱:查询响应慢,并发持弱:随着业务量的增,业务数据分析所需数据量不断增,现有架构下数据查询所需时间不断增加,影响业务作效率以及业务决策;并发持弱,不易横向扩展,当并发激增时,法提供较好的查询体验;l 数据范围和灵活度受限:数据范围和灵活度受限:业务数据范围限制,报表展历史数据范围有限;随着业务量的增和业务精细化管理,多维度数据分析的业务诉求越来越强烈,现有固定维度数据分析法满业务需求。3、Kyligence 应场景 解决案 版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 38 为了打造全场景数据服务能打造全场景数据服务能,解决平台管理难、分析找数难、应取数难等问题,该城商信卡中正建设新代数据服务平台,提升对复杂市场环境和监管政策下的数据服务能,实现数据业务价值挖掘和数据价值变现,为信卡业务战略决策和效运营提供准确效的数据持为信卡业务战略决策和效运营提供准确效的数据持,提升业科技竞争。其对新代数据服务平台提出了以下要求:l 结合 OLAP 和 MPP 两种数据计算引擎,实现数据处理及查询的性能、并发,提升体验;l 数据服务层持离线和实时的体衍指标数据加,并满离线和实时数据融合;l 统 OLAP 语义建模和统 SQL 查询接,简化数据分析应开发;l 衍指标可视化配置,体指标数据预计算。经过深对分析与验证,该城商信卡中最终决定采 Kyligence Enterprise 和 Presto 结合的式搭建数据服务层(指标引擎)。l 通过 Kyligence Enterprise 分布式聚合和索引技术来确保关键分析的查询性能,并提供性能和并发能;l 同时借助 Kyligence 智能路由功能将低频查询智能下压 Presto,满低频查询也能以较快速度响应;l Kyligence 实现智能查询加速功能的同时,能对频慢查询进性能优化,实现多表数据量下的多维助分析。版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 39 Kyligence 提供企业级的融合数据分析和管理解决案,既利了智能化的预计算索引技术,为 PB 数据集上提供超性能、并发的查询响应能;同时充分利了数据架构优势,将近实时数据的分析时延降低分钟级别,优化了数据平台架构,助企业更加快速、效地从数据中掌握市场变化趋势。4、客收益 该城商信卡中采 Kyligence 和 Presto 相结合的式搭建数据服务层已初成效,实现了统指标引擎和统查询;同时改变了数据的常开发模式,以及业务的数据应模式,降低了数据开发的成本,提升数据应的效率:l 成本幅下降成本幅下降:原来需要 2 2-3 3 个个才能完成 100 个衍指标的开发,在现有开发模式下仅需仅需 10 10 天天即可完成;l 交付效率提升交付效率提升:如不涉及底层数据源修改,指标新增或修改在 2-3 天内即可完成交付;l 查询性能幅提升查询性能幅提升:查询响应从 30 分钟提升秒级,业务员查询体验幅提升,赋能业务更快速的获取到关键数据,布置动任务;l 赋能精细化运营赋能精细化运营:使多维度数据量的多维助分析成为可能,赋能市场部进精准营销活动。版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 40 六、Kyligence 助力重庆银行获 IDC FinTech 突破奖认可 重庆银引 Kyligence Enterprise 智能分析平台,通过与多维分析模型的有机融合,实现了数据分析全流程体化、智能化和敏捷化!解决看数、数、管数难题”全球知名的科技市场研究机构 IDC 主办的“2022 IDC 中国数字融论坛暨颁奖典礼”在北京隆重举。Kyligence 服务的重庆银“数据智能分析平台项”数据智能分析平台项”凭借在数据模型和智能创新的独创性贡献,荣获“2022 IDC 中国融业技术应场景应场景 FinTech FinTech 突破奖突破奖。1、为什么选择 Kyligence?近年来,重庆银业务快速发展,数字化转型不断深,内数据量迅速增,数据复杂度持续加。由于历史数据量较,业务关联数据表较多,数据分析的查询响应难以满业务部的需求。在此背景下,重庆银选择引 Kyligence Enterprise 智能多维数据库产品连接悟空和 Smartbi,针对原有的数据分析功能进整合,建设了统数据智能分析平台,助数据开发、管理、分析效率的提升。2、统数据智能分析平台的项架构 重庆银此项以数据平台为基础,提供多数据源的对接,以 Kyligence 数据预处理 OLAP 技术产品体系为核,实现数据模型化管理,数据分析的预处理,并发、低延迟多维数据分析,多通道数据访问等功能。版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 41 该项建设部署在“”数据分析环境,作为数据平台上的计算及应模块,实现数据助智能分析功能,包括数据源层数据源层、数据模型层数据模型层和数据应层数据应层三个层次,其具体架构如下:数据源层 提供多数据源对接能,持按需扩展数据源,实现数据统。本项对接重庆银“”数据分析环境,以独的集群持数据分析的数据需求。数据模型层 数据模型层主要负责数据加,把原始数据如客信息、合同信息、交易流数据,加成向主题分析的业务模型;整个实施过程分成源数据分析、MAPPING、ETL、数据标准化、测试等;最终形成的主题模型层,如个部主题、公司业务主题、险主题等,于系统的分析、挖掘具的数据撑。l 提供可视化数据模型设计和管理能,实现数据模型的统;l 提供数据体预计算能,实现并发、低延迟的多维数据分析;l 提供 ODBC/JDBC/MDX/RestAPI 多种数据访问能,实现多维查询的统;l 提供 BI 可视化、助分析、WEB/APP 数据应、数据智能化 Python 等多种通道对接能,实现数统。数据应层 通过“悟空”,该平台将 Smartbi、Excel、Python 等应提供给管理决策者、普通业务、数据科学家等不同数据消费者使,其看到的数据模型、获取的数据均保持致。该平台实现了报表可视化、多维分析、即席查询、助分析等基础功能,以及数据挖掘算法、机器学习等级功能数据层的完全统。3、创新案与应 通过预构建数据体 Cube、统数据业务语义管理,Kyligence 为管理决策者、普通业务、数据科学家提供了统的分析平台,实现了对数据模型的管理。基于这些模型进语义定义,该平台将数据模型转换为业务友好的语,赋予数据业务价值,满业务员在数据分析快速效、简单易等需求。3.1 新增数据分析具,提升数据分析性能 Kyligence EKyligence Enterprise nterprise 智能多维数据库智能多维数据库通过预先构建多索引的数据体,将计算结果存储在多个维度值所映射的空间中。业务员进查询和数据分析时,通过对 Cube 的查询及简单处理即可快速获取结果,实现助的数据洞察和有效的业务决策。!版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 42 3.2 数据 OLAP 预处理分析技术案 数据 OLAP 预处理分析技术是对多维分析可能到的维度和度量进预计算,将计算好的结果保存成 Cube,供查询时直接访问,把复杂度的聚合运算、多表连接等操作转换成对预计算结果的查询,这保障了 OLAP 平台能够拥有优秀的查询响应和并发能。3.3 多维数据分析与建模服务 多维数据分析与建模服务是本项关键核模块,基于预计算多维分析技术,Kyligence 提供了多数据源接,数据模型设计和管理,数据体预计算构建,亚秒级多维实时分析查询,企业级数据安全等功能,满了重庆银在易、性能、稳定、安全、兼容、级分析等的要求,提供 PB 级数据集上的并发低延迟查询。重庆银坚持把主创新放在科技赋能和数字转型的关键位置,从数字化、智能化等多维度推动全质量创新发展,以科技创新为关键变量,实现融发展的最增量。未来,Kyligence 将继续携重庆银,以数据赋能业务,助数字化转型。!版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 43 七、打造智慧银家,提升业务团队精益化经营管理平 掌上银智慧经营项在该银的落地实现了业务团队端和 IT 团队端的双赢。从业务团队端,实现了以数据洞策略,拓展了移动展业场景,实现线上线下全流程经营;从 IT 团队端,初步实现以数据驱动业务模式,通过数字化的标、过程、团队分析,赋能销售管理模式新。”1、企业简介 这家领先商业银以“了解的市场,熟悉的客”为准原则,坚持“当对”的经营策略,以为客提供多元化融服务为标,打造“公司银、零售公司、个银、融市场、信卡、票据业务、投资银、资产托管、资产管理”等利润中,初步形成多元化的业务增模式和良好的品牌形象。该领先商业银树科技就是第产的理念,不断加科技系统建设投度,已在同类银中建起定的较优势。这家银以业务驱动为着点,持续深化应系统建设,逐步构建向业务、向服务、向客的“三位体”应系统体系,打造科技系统六平台,为银远发展提供坚实的科技撑。2、项背景 2.1 业背景 这家领先商业银计划通过构建零售融掌上经营分析 App,来实现对个经营部的赋能。为此,个经营部提出期望从经营和管理两个度来进零售银业务的分析,实现数据驱动决策,提升业务团队精益化经营及管理平。实现全精益化经营:实现全精益化经营:l 新客营销获取新客营销获取:打通线上掌上银、线下营业点,助私域流量营销获新;l 拓展移动业务拓展移动业务:标准化管理场景赋能,结合数据落实打穿,从推动数字化经营;l 客经营维护客经营维护:以场景例驱动客分群、分层,盘活存量,动态经营。实现全精细化管理:实现全精细化管理:l 业务标管理业务标管理:以标准化商机漏 为分析 业务溯源,实现过程精细化管理;l 团队标管理团队标管理:贯彻统经营视,将标层分解传达,实时检视追踪;l 团队过程管理团队过程管理:持业务离柜离,现场进件转化,提升员展业效率。版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 44 2.2 公司现状和痛点 在该领先商业银现有 IT 架构下,难以较好地撑上述个经营部的期望,存在着实际的痛点。主要表现在传统的架构临数据链路流程、开发成本、运维难度,性能低等挑战。l 灵活性较差:灵活性较差:采上下的开发流程,往往中间代理数据中间表与业务需求强耦合,法应对业务多变的需求调整;l 交付周期:交付周期:通过程师开发量的脚本代码来持,从业务需求分析开始,再到调整代码,测试,发布少则 1 周,多则 1;l 并发持弱:并发持弱:传统架构中的 RDBMS 存储聚合数据,当数据量增或业务员访问激增时,法提供较好的业务员操作体验;l 运维成本:运维成本:开发员除了要关注业务需求实现脚本代码技术外,还需要深了解底层存储、关设计、流量负载等优化作。3、Kyligence 应场景 解决案 这家领先商业银期望通过项建设,借助掌上银 app 等移动技术,实现创新覆盖银零售业务场景的智慧银。除了解决现有 IT 架构中实际的痛点外,更需效赋能业务员,从实现串联全业务场景流程的精益化经营。!基于上述需求,该领先商业银前期进了深的调研和技术选型,在和 Kyligence 进多次、深度的业务沟通和技术交流后,该银最终选择了 Kyligence 的产品及解决案。该案通过 Kyligence 的 AI 智能推荐,构建精确索引提升查询性能;通过分布式平扩展架构,均衡负载撑并发的流量。版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 45 从技术看,解决了之前架构的痛点:l Kyligence 提供的统数据服务案,内置模型资产、AI 增强、聚合索引,能够快速响应业务需求变化;l 通过 Kyligence 产品标准化的开发流程,更利于团队间协同作,极缩短了业务需求的交付周期;l Kyligence 的聚合索引、以及横向扩展等特性,有效降低查询响应时间、提并发性能,最终为掌上银智慧经营 App 的业务员提供良好的使体验;l Kyligence 产品提供全位的运维管理监控,确保平台旦有问题便能快速定位和解决,保障平台稳定运。从业务看,陆续得到这家领先商业银上下各层级业务员的良好反馈,主要体现在如下:l 业务战报:给各分的业务经理提供各个的业绩状态查看,可精细到天或是任务范围段;l 晨汇报:给各分的部领导提供 T 1 的业绩战报数据,于晨会作汇报与总结;l 穿透式分析:各业务经理可管理各名下的业务员信息,能下钻客具体的统计数据信息;l 客群经营:各业务经理可根据需求,筛选服务标的客群体进营销管理。版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 46 4、收获的成果 这家领先商业银的掌上银智慧经营项共计推到推到 400 400 多个点,覆盖约多个点,覆盖约 6 6000 000 个内业务员个内业务员,在功能和性能上均达到并突破了客的预期:l 赋能零售业务数字化经营,实现穿透式管理与经营分析:零售业务全数据赋能,持从管理层汇总数据层层下钻点、员级等明细数据,实现数据径致的穿透式管理与经营分析;l 90%以上的查询响应时间于 1 秒,给予业务员良好的操作体验;l 实现批流数据融合查询,点数据时效性缩短时级,业务员可查看近时的数据。这项在该领先商业银的落地也实现了业务团队端和 IT 团队端的双赢。从业务团队端,实现了以数据洞实现了以数据洞策略,拓展了移动展业场策略,拓展了移动展业场景,实现线上线下全流程经营景,实现线上线下全流程经营;从 IT 团队端,初步实现以数据驱动业务模式,通过数字实现以数据驱动业务模式,通过数字化的标、过程、团队分析,赋能销售管理模式新。化的标、过程、团队分析,赋能销售管理模式新。版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 47【保险篇】、Kyligence 助泰康数据驱动保险机构精细化运营 在泰康集团数据平台的建设过程中,基于 Kyligence 所构建的亚秒级、并发的 OLAP 服务层能,助集团架构实现多维度的分析应,以及统的数据服务接。其显著降低了数据开发的成本,赋能业务精细化运营,助分析师更效地助化洞察数据。”泰康集团数据平台负责 1、业背景 保险公司的盈利主要包括承保利润和投资收益两部分,这也被保险业称为双轮驱动的盈利模式。其中,虽然主要盈利并不是来保费收,但是保证每款产品的保费收于产品赔付额,才能有机会进次收益投资,获得额的业回报。因此,控制好产品的赔付率,保证在营产品的正向收对保险业来说是基本的存要求。在益激烈的市在益激烈的市场竞争和技术变这两背景下,基于数据、智能等技术的商业模式创新,以及数字化场竞争和技术变这两背景下,基于数据、智能等技术的商业模式创新,以及数字化转型升级已经成为保险机构的必然选择。转型升级已经成为保险机构的必然选择。2、保险业现状和痛点 数据时代,保险业所涉及和积累的相关数据越来越多,其中既包含公司营的业务数据,也有合作渠道的电商销售、医疗健康等数据,还有第三的信贷评级、出为等数据。对如此的数据量,既有挑战也有机遇,将这些数据进充分整合并有效利,才能更好地使其转换为企业的数据资产,让数字反映出真实的运营状况,及时控制产品险和策略调整,以实现保费收的正向利润,达到精让数字反映出真实的运营状况,及时控制产品险和策略调整,以实现保费收的正向利润,达到精细化运营。细化运营。前部分保险企业在数据管理及分析都存在以下痛点:l 传统数据平台和解决案已法撑益增的数据量,数据分析时效性在不断降低;l 量数据分析需求依赖定制化实现,法有效撑业务速发展的步伐;l 部分数据以固定报表形式呈现,缺乏灵活的助式分析服务。3、Kyligence 应场景 解决案 版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 48 Kyligence 服务了各各业的领先企业,助保险客在多维度的灵活分析多维度的灵活分析、准备计提的应准备计提的应、业务员的绩效分业务员的绩效分析析等精细化运营的多个业务场景实现了创新应和项落地。应场景 1:客保单理赔精细化灵活分析 在保险业务过程中,经常需要基于保单赔付情况对客进不同维度的统计分析,从达到多度精细化管理在保险业务过程中,经常需要基于保单赔付情况对客进不同维度的统计分析,从达到多度精细化管理的的。的的。由于个客通常有多条保单赔付记录,就需要从明细流记录对客进去重统计。当企业数据量越来越时,传统 DB2 的架构就逐渐凸显出了不。企业希望能在选择不同的期范围的同时,能对客数进多维度的灵活分析。传统的基于 DB2 的数据平台,要想保证分析的灵活性,就要从明细表中按需即席统计去重的数,然随着数据量增和业务场景增多,这种式往往会带来些性能问题性能问题,业务员难以忍受时间的查询等待。如果提前将数据统计好预先存在张结果表中,供前端报表访问,会带来灵活性灵活性的问题,例如(由于去重统计不可累加的原理)法定义数据查询范围,法随意更改分析维度。因此,因此,IT IT 部常常陷两难的境地,灵活性和时效性只能选,业务部则往往是部常常陷两难的境地,灵活性和时效性只能选,业务部则往往是“灵活和速度我都要灵活和速度我都要”。Kyligence 基于预计算的多维分析设计模式,充分融合了精确去重能,以 Bitmap 算法使得去重统计可以预计算,持数据的增量加载;查询数时,可对维度任意组合;持整跨度的业务查询场景,既满了时效性也提供了灵活性。应场景 2:准备计提的应 保险机构跟银类似,都需要保留定的现量,也称为准备。保险的未决赔款准备,是来给保险产品的理赔出提供充分撑的种保障。与银不同的是,由于每款保险的赔付情况跟产品属性强相关,保险业的准备数额是可以被较为准确地计算出来的。保险公司希望在对赔款准备进准确预估后,就可以提取出更多的现进次收益投资,从最化主营保险公司希望在对赔款准备进准确预估后,就可以提取出更多的现进次收益投资,从最化主营利润。利润。同时,产品部将准备精算到每款产品后,也能够及时了解每款产品的盈亏属性,从进有效调整或者损。版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 49 链梯法是评估未决赔款准备最常的法,使链梯法计算的未决赔款准备分为两部分,部分是已赔付额(上三),部分是未赔付额(下三)。客以前使 Cognos 查询出上三时,由于不持定制化前端展现或数据访问接,因此只能在将上三数据导出后,在 Excel 中进下三的因调整并次加,得出未赔付额。通常多轮调整计算因下来,需要需要 2 2-3 3 天时间才能完成款产品的分析天时间才能完成款产品的分析。如果有 100 款产品,就可能需要个分析年,因此企业只能挑选部分产品进精算。Kyligence Kyligence 在提供性能数据管理及分析能的同时,持以在提供性能数据管理及分析能的同时,持以 API API 接的形式对接不同的定制化展现前端接的形式对接不同的定制化展现前端,因此能将下三的计算程序轻松集成到前端应中,从省去导出 Excel 计算等过程,通过参数化的界操作就可通过参数化的界操作就可以在分钟级完成每款产品的分析,从助企业真正做到产品级别的精细化运营能以在分钟级完成每款产品的分析,从助企业真正做到产品级别的精细化运营能。4、获得的成效 Kyligence 智能数据云平台通过效的响应性能,灵活的数据多维模式,丰富的数据服务接等,提升了数据应的效率,开放了业务助分析的能,助保险业务在精细化运营的道路上不断精进:l 数据量复杂场景的数据分析时效性由每周(更新次)到每天(更新次)每周(更新次)到每天(更新次),提升了分析的时效性,有利于业务及时进决策;l Kyligence 多维的数据模型应式,替换了之前不够灵活的的应宽表开发,节省了节省了 IT IT 员员 50P%的定制开的定制开发作量发作量,有效提升了 IT 部的效率;l 从以往多为固定报表的形式,升级为具有开放能的助分析平台,提升业务员提升业务员 300%的分析的分析。版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 50 九、世界 500 强险企建设指标驱动的经营分析系统 2021 年是引 Kyligence 引擎能的元年,我们聚焦于平台的搭建集成和部分重点应的落地,很好的完成了标。在双项组成员的共同努下,我们完成了平台建设、集成对接、投产保障、员培训等各项准备作;归纳出了 Kyligence Enterprise 在我们公司的使规范和最佳实践;完成了多个应的上线;保障了团体业务数据分析项成功汇报,获得业务团队的信任与致好评。”世界 500 强保险企业 1、业现状及痛点 随着宏观经济、业、市场及客需求的不断变化,叠加疫情因素,保险代理规模 2019 年冲上 912 万位后便进下通道,以往粗放的“海战术”难以为继。财产保险尤其是险,综合成本率期居不下,2021 年上半年财产险全业的险综合成本率度达 99.9%。对于保险企业,建设以指标为核的经营分析系统、以数据驱动业务增成了数字化转型的关键。指标对于指导经营决策关重要,Kyligence 服务的这家保险企业早期就建了指标平台,标是从经营全景视,来统指标管理、统定义径、统数据服务等,其指标平台底层引擎最初基于 Druid 创建,但随着指标平台的多轮迭代,逐渐衍出以下问题:l 指标定制化开发,量重复作指标定制化开发,量重复作:指标定义需要与业务反复沟通后,再由数据开发团队进定制化开发;每个指标烟囱式开发,定制化配置,开发组之间存在量重复;l 标准标准 SQLSQL:Druid 对表关联持度较低,对于维度模型查询不友好,增加了开发难度;l 持场景有限,运维成本持场景有限,运维成本:数据集市为了满查询性能要求需要加宽表,产量中间表,后期运维成本;不持基维维度的加,法持精确去重场景。2、Kyligence 应场景 解决案 2021 年,这家企业选择 Kyligence 智能多维数据库产品及解决案,建设以指标核的经营分析系统,服务了多个业务场景,以数据驱动业务增。版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 51 应场景 1:业务实现助式分析 保险企业为控制和优化成本、提效,业务员成本分析等作必不可少。该险企现有业绩贡献的业务员就有上万,他们属于不同的组织机构,从不同来源为企业带来保费收。以往,业务分析师是通过取数取数 Excel Excel 制作报表制作报表的式进数据分析并向领导层汇报。致确定分析思路后,需要进以下作:数据分析师需要和数据开发程师进往复的量沟通;l 数据开发程师进取数;l 数据分析师使 Excel 进报表的制作。然,该式效率较低,并存在以下痛点:l 分析师常因沟通和等待取数被打断分析思路;l 受限于 Excel 数据处理能以及取数周期,分析时不得不对维度做裁剪,只能看到部分数据,难以在数据集上进多维分析和展;l 数据分析汇报展效果差强意,法实现助分析。因此,该企业希望在业务员成本分析等场景实现:版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 52 l 基于海量数据的交互查询基于海量数据的交互查询:该险企年均保单数量超亿,分析师期望可以在数百亿的数据上做快速分析,保持分析思路的连贯;同时希望在完成分析后直接基于此数据做成灵活报表,供汇报使;l 进多维度的交叉分析进多维度的交叉分析:在汇报数据分析结果时,常由总到分进说明,要求分析具可以持产品、队伍类型、机构等多维度组合下的灵活切、切块、下钻等分析能;l 进灵活的数据处理进灵活的数据处理:员归属、类别归属等需根据不同报表的进调整,分析师希望可以助完成。采 Kyligence 产品及解决案后,该产险企业能够实现整合成本分析所需维度和度量数据,在 Kyligence 上落地为多维模型,从实现从产品、队伍、机构、业务来源等多个维度对百亿级保单的明细数据百亿级保单的明细数据进助分析,并完成报表制作,提升业务分析决策效率:l 整合数据模型整合数据模型:整合各数据,得到个包含有产品、队伍、机构及时间等关键分析视的多维星型模型,提供更丰富的分析度;l 极简智极简智能建模能建模:通过 Kyligence 接数据,快速可视化建模,开发全程代码,幅缩短需求交付周期;借助 Kyligence AI 增强引擎,智能加速关键查询,需繁琐的模型设计优化;l BI BI 直连分析直连分析:借助 Kyligence Enterprise 的 Model as View 功能,分析需在 BI 具上重复建模,可直接对维度、度量执拖拽分析,并持在 BI 具中进次计算加出业务来源。应场景 2:指标中台架构优化 指标中台于管理指标的定义、查找、开发、发布等重要功能,同时也为险经营分析等业务前端应提供 API 服务。指标中台建设标是保证全司径和指标的统管理、统出,底层依赖于数据集市加的宽表作为数据源进开发,开发的流程较。版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 53 选 Kyligence 产品及解决案后,该产险企业逐步实现了指标体系的标准化管理和统指标服务,显著提升了业务助分析能:l 缝对接业务前端应缝对接业务前端应:在指标查询层,利 Model as View 能,将在 Kyligence 中创建好的复杂模型,以张宽表的形式展现,减少宽表开发,应端 SQL 需引复杂的表关联关系,即可满;l 精准推荐、查询响应更快、优化精准推荐、查询响应更快、优化:利 AI 智能推荐引擎,收集业务员的查询为,后续推荐更为精准的索引,同时持性能和并发的查询。应场景 3:集市层低代码开发 数据集市作为各分析系统的对接层,为了满应层的查询性能需求,需要加量的宽表。在该险企,以往维度都是按需进的烟囱式加模式,业务部的需求有任何变更,都需要通过修改代码、正式发版流程实现,存在以下痛点:l IT 部维护成本,开发周期,数据的加链路,依赖关系复杂;l 数据烟囱多,导致数据冗余;l 集市组之间互相引,没有完整设计规范。该企业之前的数仓加链路中,分为 ODS 贴源层、DWD 数仓明细层、DMD 集市明细层、DMS 轻度汇总层、DMI 接层等,各层表间错落交叉,还有互相引的现象。该产险企业希望减少该产险企业希望减少数据集市层的链路开发,建设标准的数据集市层的链路开发,建设标准的维度建模模型,减少维度模型之后的加过程,降低维护成本,实现集市层的低代码化。维度建模模型,减少维度模型之后的加过程,降低维护成本,实现集市层的低代码化。版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 54 选 Kyligence 产品及解决案后,企业可实现直接对接数仓明细层、集市明细层和轻度汇总层,同时持表之间关联以及标准的星型结构和雪花结构,之后由 Kyligence 模型统提供服务,完成对各类 BI 的对接。通过对集市层的改造,减少量中间表和宽表的开发,缩短数据处理链路,约可以节约节约 300%的开发成本的开发成本。此外,由 Kyligence 模型提供查询服务,可以达到秒级甚亚秒级的查询响应;统了数据模型,实现套模型对接多种服务,完成了数据径的统。3、收获的成效 2021 年引 Kyligence 后,该世界 500 强保险企业实现了多个场景和重点应的落地,实现了:l 撑海量数据的助分析撑海量数据的助分析:业务助分析数据从原来的万条万条扩展到 120120 亿亿 条明细数据,满了业务员和分析师对海量数据的助分析需求;l 提升提升 IT IT 部的作效率部的作效率:针对已改造的集市主题统计,减少了 300%数据集市临时表和宽表的开发量,减少 IT 员的定制开发作量,实现 IT 与业务的新协作模式;版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 55 l 改善数据分析体验改善数据分析体验:65%查询在 1s 内响应,91%查询在 3s 内完成,同时持精确去重等场景,在不影响业务员使习惯的前提下,提升了查询分析效率。版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 56、数字化经营底座助寿险业转型 中国是全球规模最、最具活的寿保险增市场,预计未来年依然会保持两位数的增速度。近年来,随着保险业的发展和保险业市场竞争的加剧,保险公司在管理和运营临着更的要求,来监管、竞争、技术更新及全球化等各的压正在不断推动保险公司运营模式的转型。”前,随着业的迅速发展,许多保险企业的现有平台难以撑益增的分析需求,各团队在数据的开发和使碰到了如下挑战:l 销售、运营等业务部对同指标的统计径不同,影响正常经营决策活动,以于法有效撑公司战略标的落地;l 对于企业各部主管及业务分析员,现有数据平台对即席查询的响应过慢,因此很难及时获得所需报表,较难按照业务敏捷的需求灵活分析;l 对于数据开发团队,需要反复对相似的需求重复造轮,另外开发的报表越多,后续运维难度也就越。1、数据驱动保险业精细化运营 Kyligence 智能多维数据库凭借其强的 AI 增强引擎、多维预聚合、智能推荐以及并发等能,帮助客以极低的 TCO 加速数字化转型,打造数字化营业部,助保险精细化运营。!版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 57 l 成本节省成本节省:Kyligence 可视化建模、AI 增强引擎和多维动预聚合等能,将指标的开发时间缩短了 50P%,每年可带来数百万数百万的成本节省;l 缩短数据交付周期缩短数据交付周期:Kyligence 提供可视化的模型开发环境,帮助数据建模员降低了建模难度,同时极加速模型的开发速度,单个主题开发周期将能从周缩短到天,将能带来 5 5 倍倍的计算效能提升;l 代理级别的分析粒度代理级别的分析粒度:相持到营业区级别的的查询,Kyligence 可以持到营业组、乃代理级别的分析,并能在秒级别提供并发的查询响应能;l 数据资产沉淀数据资产沉淀:Kyligence 提供低代码模型设计与管理平台,模型元数据可轻量级接数据资产管理体系,沉淀数据资产模型。2、寿险业数据分析的挑战及解决案 接下来我们将以保险代理管理中较常的“增员”和“基本法”为例,介绍寿险业在数据分析中常碰到的些问题,诸如分析报表固化、数据更新不及时、查询响应慢、并发撑能较弱等,以及寿险业如何通过缩短数据开发流程以及更可靠的指标体系来释放业务助分析潜,打造数字化经营底座。场景:多维增员分析 增员可以简单理解为增加保险公司的业务员。在增员过程中,及时进增员分析将能帮助公司及时掌握增员达成情况,进促进公司战略的实现。增员分析通常涉及留存率、增员率以及增员达成率等核指标。在进增员分析时,公司希望能按时间、区域以及员来源来分析公司员的留存率、增员率以及增员的达成率。这些需求法通过单独的张报表或些简单的指标来实现。但多数情况下,由于公司数据平台和分析技术的限制,个指标的开发可能要天的时间,开发成本过,使得公司法及时地追踪公司的增员进展。此时,就可以借助 Kyligence 的多维分析与处理能。Kyligence 将帮助企业从历史查询中识别出典型分析模式,从加速公司指标体系的构建,简化指标平台管理,赋能保险公司从多个维度进增员分析,例如:l 时间维度时间维度:定义查询周期,如、年等,全掌握具体时间段内的增员达成情况;l 组织维度组织维度:从不同组织架构判断公司的增员达成情况,如部、项组或地区等,及时找出当前资源较薄弱的环节;l 招募来源招募来源:综合判断各渠道的招募效果,从确定接下来资源的倾斜情况。场景:指标体系助基本法分析 版权所有 2022 上海跬智信息技术有限公司保留切权利 所有其他商标均为其各所有者的财产。访问 kyligence.io 了解我们 58 基本法即代理基本管理办法,是代理业务考核、职业晋升和收管理办法,它规定了保险公司内部的利益分配格局。保险公司在搭建基本法分析平台时,通常会碰到类问题:l 指标体系复杂指标体系复杂:公司各层级关注的重点不同,如总公司更关注标达成率、同增率、间佣率等,希望据此优化公司整体标并进决策;中层更关注团队的标达成率,不同层级员的贡献情况;线员更关注的晋升空间,希望查看个的新进保单量等数据;l 代理基数庞代理基数庞:数据显,2021 年上半年中国五上市寿险公司的销售合计为 336 万,排名第的中国寿更是达 115 万,因此分析对象的基数庞,除公司管理层外,各团队负责及员都希望能实时查看各业务细分指标的进度;l 组织架构调整频繁组织架构调整频繁:保险公司的组织结构和事变动频繁,例如,Larry 是 S 公司的名销售,在上海总部作,段时间后,他被调到北京分公司,此时分析平台法及时反反映这变化,影响后续的销售数据统计。借助 Kyligence 的多维动预聚合等能,保险公司将能轻松应对上述问题,构建出套完整的定制化指标体系,同时 Kyligence 还提供了成本最优的性能查询能,持更多在线使,帮助企业释放业务助分析潜:l 撑统指标的数据服务撑统指标的数据服务:Kyligence 将帮助不同业务部之间能共享业务逻辑,使其能获得来共享数据更全的视,帮助企业有效挖掘其价值,驱动公司的决策制定和战略标的实现;l 全位、多层级分析全位、多层级分析:Kyligence 的优越性能将满公司不同层级、不同颗粒度的分析需求,例如在总公司层,公司领导层可以及时查看公司当期的标达成率、同增幅度等,并据此优化公司整体标和制定战略;个也可以实时查看的业绩完成情况,及时调整业务运营向;l 更细粒度的并发访问更细粒度的并发访问:Kyligence 提供了稳定的并发查询能,即使在查询量总数达到数百万的情下,也能稳定地提供秒级并发即席访问能;l 灵活应对组织结构变化灵活应对组织结构变化:Kyligence 持通过维度快照跟踪员信息的动态变化,既保障了查询性能,避免了不必要的模型数据刷新的开销,从满了不同的数据分析需求,幅提升数据分析的效率。前 Kyligence 已经与国内的多家头部保险企业达成了战略合作关系,通过帮助寿险业缩短数据开发流程以及搭建更可靠的指标体系来打造数字化经营底座,释放业务助分析潜,从帮助各保险公司更好地进数据挖掘和数据资产的沉淀,助商业经营决策。
22人已浏览
2023-03-29 59页
5星级
新华财经:2023年中国大学生基金投资调查白皮书(26页).pdf
2023年中国大学生基金投资调查白皮书2023年中国大学生基金投资调查白皮书倾听大学生声音,助力理性投资风险提示:投资有风险,在进行投资前请参阅基金的 基金合同、招募说明书 等法律文件。本资料仅为宣传用品,不作为任何法律文件。基金管理人承诺以诚实信用、勤勉尽责的原则管理和运用基金资产,但不保证基金一定盈利,也不保证最低收益。上述资料并不构成投资建议,或发售或邀请认购任何证券、投资产品或服务。所刊载资料均来自被认为可靠的信息来源,但仍请自行核实有关资料。投资涉及风险,不同资产类别有不同的风险特征,过去业绩并不代表未来表现。投资前请参阅销售文件所载详情,包括风险因素。观点和预测仅代表当时观点,今后可能发生改变。报告出处人介绍关于新华财经“新华财经”是国家发展改革委立项、中央财政支持、新华社建设的国家“十二五”政务信息化项目,是中国经济信息社承建运营的国家金融信息平台,是国家金融业基础设施的重要组成部分。依托专业终端、移动终端、公共终端、门户网站,已具备资讯、研报、数据、行情、分析工具、交易信息服务六个方面的基础服务能力,为政府部门、金融机构、企业、研究机构、高校等提供定制化解决方案。关于蚂蚁投教基地蚂蚁集团投资者教育基地是中国证监会授牌的国家级证券期货投资者教育基地。蚂蚁投教基地小程序自2020年在支付宝App上线以来,秉持“以用户为中心,易懂实用与时俱进”的投教理念,将专业内容和服务能力以丰富多样的形态融入理财场景中,持续为亿万投资者提供集系统性、互动性、成长性于一体的学习体验,在监管机构指导下,与官方组织、媒体平台、行业机构长期紧密合作,共同开展广泛、多样、生动的投教活动,助力社会公众与行业生态共享资本市场发展成果。截至2023年,覆盖用户超5亿人次,并与50家证券基金经营机构组成投教联盟。关于上投摩根基金上投摩根基金管理有限公司,成立于2004年5月,由摩根资产管理和上海信托共同组建,是中国最早成立的中外合资公募基金公司之一。2023年,经中国证券监督管理委员会批准,摩根资产管理完成了对上投摩根基金的全资控股。截至2022年底,上投摩根基金拥有近百名经验丰富的专业投研人员,服务零售及机构客户超6400万,业务条线规模超过1500亿元。凭借长期卓越的基金业绩表现,上投摩根基金2022年斩获由 中国证券报 颁发的“权益投资金牛基金公司”、“金牛卓越回报”等权威公司级奖项,成为备受投资人信赖的基金公司。022023年中国大学生基金投资调查白皮书012023年中国大学生基金投资调查白皮书目录报告出处人介绍调查说明报告摘要一、大学生基金投资现状二、大学生基金投资困境及需求三、大学生基金投教工作建议第一章 初出茅庐:大学生基金投资现状一、大学生投资理财心智二、大学生基金投资现状三、大学生基金投资习惯第二章 拨云见雾:大学生基金投教需求一、大学生基金投资知识需求二、大学生基金投资知识掌握现状三、大学生基金投教服务体验与需求第三章 有的放矢:大学生基金投教建议一、监管层面:加大呼吁力度,助力投教工作落实二、金融机构及相关行业:开展因人制宜的大学生投教工作特刊 未雨绸缪:当代大学生养老规划一、大学生养老政策关注二、大学生养老意识规划三、大学生养老工作建议结语项目课题组附录样本结构0203-0607-1048495011-2627-3839-4344-4701 研究背景在互联网经济时代,金融投资理财产品呈现多样化、开放性、低门槛等特征,各种投资理财产品百花齐放,这也吸引着越来越多的大学生在校期间开始投资理财,其中不乏一些相对风险较高的理财产品。结合本次调研数据发现,随着近几年基金市场火热,基金已然成为大学生群体投资理财最普及的理财品种。大学生投资理财对其自身和投资市场发展都有着重要意义:一方面,投资理财可以帮助大学生养成理财规划的习惯,使资金能够被更合理、更有效地管理与利用,养成良好的理财消费观与价值观,塑造良好心态,提高财商;另一方面,大学生进行投资理财,可以为投资市场注入新鲜血液。当代大学生个性鲜明,对新兴事物接受能力强,各大金融机构可基于大学生投资者研究,不断优化产品及服务模式,推进投资市场螺旋式发展。但与此同时,大学生理财也存在一定的困境,如由于理财意识薄弱、基金等专业知识与技能匮乏、投资习惯不好等原因所导致的理财收益较低甚至亏损,对于资金本不富余的大学生来说无疑打击了其继续进行投资理财的积极性。目前大学生投资理财存在教育缺失或重理论而轻实践的问题,其理财经验不足以应对日常投资理财中产生的问题,遇到的理财困境也未能得到有效解决。大学生作为基金投资市场的潜在客群,也是未来基金投资市场的主要群体,投资潜力大,因此系统化、可操作性强的投资者教育对其乃至投资市场良性运行来说都很有必要。2022年4月26日,中国证监会发布了 关于加快推进公募基金行业高质量发展的意见,呼吁要做好投资者教育工作,强调基金管理人和各基金机构要牢固树立以投资者利益为核心的营销理念,积极创新投资者陪伴方式,搭建科学可行的投教工作评估体系,从而提高投资者的获得感。为响应加快推进公募基金行业高质量的发展,以及践行中国证券投资基金业协会 一司一省一高校 投资者教育项目,中国证券投资基金业协会、新华财经、摩根资产管理、上投摩根基金和蚂蚁投教基地联合发起中国大学生基金投资行为调查研究,从大学生投资理财行为与需求出发,将深入了解目前大学生投资理财习惯、挖掘其中存在的问题点及他们对投资者教育的需求,以此促进各行业参与方及时响应,为大学生树立正确的投资观,提供更有指导价值的投资者教育服务。042023年中国大学生基金投资调查白皮书调查说明032023年中国大学生基金投资调查白皮书中国公募基金规模攀升至27万亿元,数量突破10000只(截至2022年8月)300,000250,000200,000150,000100,000 50,000 012,00010,0008,0006,0004,0002,0000199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022截止日资产净值(亿元,左)总数(右)数据来源:中国证券投资基金业协会02 研究目的为了挖掘当代大学生投资理财习惯及困境,了解其所需的市场支持,中国证券投资基金业协会、新华财经、摩根资产管理及上投摩根基金联合发起中国大学生基金投资行为调查研究,并发布 2023年中国大学生基金投资行为调查白皮书。一方面,希望通过本次调查深入了解大学生投资理财习惯,挖掘其目前存在的基金投资困扰,提升基金及整体投资市场对大学生群体投资理财的关注度;另一方面,为后续各市场参与方(如监管机构、证券基金等投资理财公司、第三方理财平台等)制定符合大学生需求的投资者教育计划提供参考,以此及时引导大学生正确的投资理财观念,树立其更科学、合理的投资理财习惯。03 相关释义本报告仅指公募基金,即以公开方式向大众投资者发售基金份额、募集资金,形成独立资产,委托基金管理人进行投资管理、基金托管人进行财产托管、由基金投资者共享投资收益、共担投资风险的集合投资方式。本报告中所涉及的货币型基金、股票型基金、债券型基金、ETF等均属于公募基金。基金04 调研方式本报告结合三大调研方式采集数据。本次通过中国证券投资基金业协会、新华财经、上投摩根基金等平台投放 2022年中国大学生基金投资行为调查问卷,针对不同城市的专科、本科、硕士及博士的大学生群体进行调研,来了解当前大学生投资理财现状及未来意愿、投资理财知识/技能掌握情况及投资教育需求等。本次问卷调研最终回收有效样本共计4264条,各人群的样本回收量具体如下:线上问卷收集本次针对大学生进行了一对一深访,以此进一步挖掘大学生在投资理财时的具体行为、想法及对于投资者教育的需求。通过公开资料的收集,梳理基金市场发展现状、投资者基本情况、投资市场投教工作现状等信息,以用来作为前期研究设计参考;另通过整理投资者教育相关政策法规、养老政策等信息,进一步丰富研究产出。一对一深访桌面研究2022年中国大学生基金投资行为调查问卷 样本量(按学历分类)2022年中国大学生基金投资行为调查问卷 样本量(按城市等级分类)目标人群样本量目标人群样本量268328567635专科在读本科在读硕士在读博士在读一线城市新一线城市二线城市三线城市及以下87614616841243062023年中国大学生基金投资调查白皮书052023年中国大学生基金投资调查白皮书本报告所提及的投资者专指目前有投资理财行为的大学生投资者,投资理财行为指购买过包括余额宝等货币型基金在内的基金、股票、银行理财产品、定期储蓄等行为。投资者本报告提及的投资者教育是指针对个人投资者所进行的有目的、有计划、有组织地传播投资知识、传授投资经验、培养投资技能、宣传政策法规、揭示理财风险、倡导理性投资观念、告知投资者的权利和保护途径、提高投资者素质的一项系统的社会活动。在报告部分章节中简称“投教”。投资者教育报告摘要072023年中国大学生基金投资调查白皮书01 大学生基金投资现状作为未来经济的主要参与者,大学生对于投资理财的认知度和参与度越来越高。本次研究发现,近九成大学生觉得投资理财是必要的,多数人认为投资理财有利于日常生活和学习,超六成大学生投资理财是为了学习基金等理财知识或获得资金回报实现本金增值。但考虑大学阶段受课业、资金、时间等多方面因素影响,以及受个人的兴趣爱好驱动,大学期间进行投资理财是必要非必需的。大学期间投资必要非必需,锻炼理财能力、促进本金增值为主旋律由于大学阶段没有稳定的工作,生活费结余(72.2%)成为大学生投资理财最主要的本金来源。由于可自由支配资金数量有限,超六成(62.3%)大学生可用于投资理财的本金在5000-50000元之间,仅不到一成大学生投资金额在5万元以上,投资理财更偏以小金额练手为主。而在未进行投资理财的大学生中,“没有太多余钱”是其未投资的主要原因。生活费结余为多数大学生投资本金来源,而资金不足也是投资理财的主要障碍本次研究发现,在有投资行为的大学生受访者中,基金已成为大学生群体持有率最高的理财工具,超八成有投资行为的大学生受访者持有基金。或因投资本金不多且多数是从生活费中省下来的,多数大学生的投资风格更偏风险回避型,不会追求较高收益,以保本为主要目的。因此,宝宝类货币基金(余额宝、理财通等)以超七成的持有率成为最受欢迎的理财产品,而非货币基金(股票型、债券型基金等)也以超六成的持有率位列第二。基金是大学生最青睐的理财工具,其中宝宝类货币基金最受欢迎,非货币基金位列第二大学生整体投资风格偏保守稳健。受其投资产品多为宝宝类货币基金等产品特性影响,当前仅少数大学生(5.8%)处于亏损状态,但其收益也不高,近半数(45.9%)大学生处于“暂时不亏”的保本状态,与大学生心理期望的5%-20%的收益率还有一定差距。受主投产品特性影响,大学生整体亏损率较低,但收益也普遍不高082023年中国大学生基金投资调查白皮书六成左右大学生在购买基金时会重点关注基金过往业绩和投资行业前景,也有超五成大学生会考虑基金公司的品牌和规模,但普遍对于基金类型(混合型/指数型/股票型等)的关注度及了解度不高,对于基金的认知整体集中在行业、收益及持仓等基本面信息上。大学生选基主要考虑基金过往业绩、行业发展前景等,而对基金类型的关注和了解较低现状一现状二现状三现状四现状五大学生基金持有时间普遍不长,六成大学生基金持有时间在3个月-1年之间,仅有不到两成的大学生会持有基金一年以上。在购入基金时,超六成的大学生会综合各渠道观点,在认为时机合适时购入;而在卖出基金时,超六成大学生会本着止盈原则,在收益达到自己理想预期时卖出。基金集中管理、使用方便、不用额外注册开户等为大学生选择购买渠道时的主要考虑因素,所以支付宝等第三方财富管理平台是大学生购买基金的渠道首选;另外,一线城市大学生使用基金公司APP的比例相对其他城市较高。受市场波动大的影响,不知道何时是买入或卖出的最佳时机以及不知道怎么挑选/合理搭配理财产品来使利益最大化是大学生投资理财过程中遇到的主要问题,两者占比均超四成,而这或与大学生理财知识/技能不足有关。理财知识掌握尚可的情况在大学生群体中占大多数(58.9%),仅仅可以应对简单理财产品的日常操作,针对复杂情况则较难决策;其次,有超两成(25.2%)大学生表示自己理财知识/技能掌握不足,其认为仅凭自己目前掌握的投资理财知识无法满足投资理财需求,日常投资需要依靠身边朋友或大V建议。仅有15.9%的大学生表示理财知识/技能可以完全满足投资需要。大学生整体投资知识掌握情况有待进一步提升。多数大学生希望增加实践性经验分享类内容,其中对于行情分析策略的需求最迫切(61.3%),其次为优质产品分析(57.2%)。交易操作技巧(52.5%)、投资理财基础知识科普(52.1%)、持有产品分析(51.7%)和财产安全类科普(50.2%)等理财知识也是大学生投资理财过程中不可或缺的,占比均超过了五成。九成大学生认为有必要且有计划专门学习投资理财相关课程。其中,近八成大学生(77.4%)选择向有经验的人学习理财知识和技能,其次为市场上的投资理财课程(55.3%)。而目前大学生在高校接受的系统性教育不足,投资理财非通用性、基础性课程,课程安排占比仅为21.4%。支付宝等第三方财富管理平台是大学生购买基金的渠道首选,资金集中管理、操作便捷为其主要考虑因素大学生基金持有时间普遍不长,买入/卖出时机考虑较为理性 02 大学生基金投资困境及需求102023年中国大学生基金投资调查白皮书092023年中国大学生基金投资调查白皮书超九成大学生有投资困扰,不确定买卖时机及不知如何挑选/合理搭配理财产品为主要困扰理财知识一知半解,大学生理财知识储备有待进一步提升大学生实践性理财知识需求强烈,其中行情分析策略需求最迫切能者为师,大学生更偏向有经验的人学习理财知识;校内理财教育不足,课程安排占比仅两成大学生更偏好从基金/证券/银行/互联网金融等投资理财平台获取理财知识,占比为55.8%;其次为社交平台,如微信、QQ、微博、知乎、小红书等,占比为54.8%。其他渠道如财经媒体(新华财经、新浪财经、和讯网等)、金融理财类信息供应商(同花顺、雪球等)、短视频平台(抖音、快手等)等渠道也为其偏好的信息获取渠道。七成(71.8%)大学生接触过投资理财平台上的投教信息,整体对投教服务知晓度高;但从过往体验上看,信息分散、专业术语过多、信息查找困难、易与营销信息混淆、广告植入过多等问题使得大学生群体对目前投教信息的评价度不高。同时,由于形式枯燥、内容不符需求等问题现状,大学生希望展示形式更加通俗易懂、简单明了。超四成(45.9%)大学生更偏好真人视频形式,该形式能够直观展示知识内容,有助于系统化学习。除此之外,问答形式(44.8%)、直播形式(42.8%)、动画视频形式(39.5%)和社区论坛形式(如讨论区)(36.4%)也是部分大学生的选择。此外,近六成(58.8%)大学生更偏好实战经验丰富的知名投资分析师来进行介绍,平台理财经理(54.0%)和相关行业专家(51.4%)也是大学生比较偏好的介绍人身份。投资经验丰富或成功案例是重点关注要素,并对其表达能力强有要求,希望讲解内容通俗易懂。投资理财平台资讯和社交平台是大学生主要的理财知识获取渠道大学生对投教服务知晓度高,但体验评价不高真人问答形式是大学生投教服务主要偏好形式,若由经验丰富的知名投资分析师来讲解效果更佳现状六现状七结论一结论二结论三结论四结论五结论六结论七持续推进“一司一省一高校”的投资者教育活动,积极促进基金公司与高校开展深入合作,推进投资者教育纳入国民教育体系,提升当代大学生的理财意识,建立科学的人生投资规划。具体工作可从以下维度展开:1)搭建基金公司与高校之间的合作桥梁,推动各基金行业参与主体协同合作,开展大学生投资者教育;2)针对高校大学生特点,设计针对性的活动主题内容;3)倡导高校开设投教课程,继续扎实推进投资者教育纳入国民教育体系工作。金融机构需结合大学生投资理财知识及技能掌握程度的差异性,提供差异化、个性化、简明易懂的进阶投教服务,并利用好自有平台,在投资理财区域设置专属的投资者教育板块,并形成醒目指引,同时向外部年轻群体聚集平台拓展延伸。在形式上,应避免枯燥单一的教育形式,根据大学生群体喜好结合多元展示形式,同时为保证内容专业性和可信度,需由专业且经验丰富的分享人来介绍投教内容。持续推进“一司一省一高校”投教活动,推动投资者教育纳入国民教育体系金融机构提供个性化投教服务,需内容简明易懂、平台双管齐下、形式复合多元、讲解内行专业建议一建议二03 大学生基金投教工作建议大学生基金投资现状近九成大学生认为大学阶段投资理财是需要的,其中多数大学生认为大学阶段由于受到学业、时间、资金等影响,投资理财小金额练手即可。本次研究显示,近九成(88.3%)大学生认为在大学阶段有必要(含非常必要及比较需要)进行投资理财,多数大学生认为大学期间了解和尝试投资理财有其必要性,在大学阶段积攒投资理财经验,可以为日后进入职场后的个人资产管理或家庭资产规划打下一定基础。而对于是否一定要在大学期间进行投资理财,多数人认为这与个人兴趣相关,不是必需的,且也会受到资金、课业、时间等多方面因素的影响,没有太多精力过多投入到投资理财中来。大学生投资理财必要性认知比较需要46.5%非常必要41.8%一般9.2%不太需要非常没必要0.4%2.1%数据来源:2022年中国大学生基金投资行为调查问卷(N=4264)第一部分 投资理财态度必要非必需,锻炼为主122023年中国大学生基金投资调查白皮书112023年中国大学生基金投资调查白皮书初出茅庐第一章01 大学生投资理财心智受访者Z(英语专业,大三):“我觉得投资理财还是挺重要的,有利于以后工作,也可以更好地规划家庭资产;而且大学期间时间相对自由一些,正好可以学习下理财练练手。”受访者L(财务管理专业,大三):“我自己有在投资,只是手里资金不多,不过慢慢去试,一点点摸索还是有必要的。”受访者W(金融学专业,大四):“个人觉得投资理财还是很有必要的,但是大学生如果投资股市可能不太合适,风险比较大,而且忙于学业,没有太多时间去盯盘看,买基金会好一点。”受访者J(金融学专业,大四):“我觉得对投资理财有一些了解还是必须的,但是大学期间不一定要去做(投资),因为要考虑到学习,如果要盯盘、选择入市时间等也会比较占用时间,而且有的同学手上闲钱也不多,工作之后理财还是很有必要的。”受益于互联网平台广泛的用户基础及平台资金闭环管理的优势,凭借产品操作简便、收益稳定等特点,余额宝、理财通等宝宝类货币基金成为大学生持有率最高的理财产品(70.8%);而出于平衡风险与收益的考虑以及市场热度的影响,超六成(62.6%)大学生购买过非货币基金(股票型、债券型基金等);此外,五成大学生为了确保资金安全,会将钱放入银行定期储蓄(52.5%)或者购买银行理财(49.8%)。少部分大学生受到高收益驱使或亲友影响会购买股票,但从整体来看,多数大学生认为股票需要耗费更多的时间、精力以及更高的专业性支持,因此只会投入较少比例资金,或不投资股票。从不同学历来看,学历较高人群对于风险较高产品的接受度和持有率也相对较高研究发现,专科生中持有率最高的理财产品是定期储蓄(占比49.6%);随着学历的提高,非货币基金(股票型、债券型基金等)及股票持有率也逐层提升,其中硕士及以上学历的大学生非货币基金及股票持有率最高。专科在读生理财产品的持有占比TOP4大学生购买过的理财产品不同学历股票及非货币基金持有人数占比大学生目前可用于投资理财的本金区间占比数据来源:2022年中国大学生基金投资行为调查问卷(N=4262)数据来源:2022年中国大学生基金投资行为调查问卷(N专科=268;N股票持有人数=1221)数据来源:2022年中国大学生基金投资行为调查问卷(N=4068)定期储蓄定期储蓄49.6p.8%宝宝类货币基金(余额宝、理财通等)宝宝类货币基金(余额宝、理财通等)48.9.3.4%非货币基金(股票型、债券型基金等)非货币基金(股票型、债券型基金等)40.3%银行理财产品银行理财产品股票债券从未购买过以上都购买过32.8b.9.9i.86.7%专科本科硕士及以上非货币基金股票62.6R.5I.8(.6.9%4.6%2.2%第二部分 投资品选择基金是大学生最青睐的理财工具,其中宝宝类货币基金最受欢迎,非货币基金位列第二研究显示,超六成(62.3%)大学生可用于投资理财的本金金额在5000-50000元,其中投资本金在10000-50000元的大学生占比31.4%。6.4%.00.91.400元及以下1000元-5000元5000元-10000元10000元-50000元50000元以上6.32023年中国大学生基金投资调查白皮书第三部分 投资本金5000-50000元居多,生活费结余为主要来源,一线城市大学生更多来源于实习兼职所得受访者W(金融专业,大四):“我的钱主要都放在余额宝里,有收益,用起来也比较方便;银行里也放一点,是定额存款,偏理财产品的那种;少部分钱会购买基金试试水。”受访者Z(电子信息工程专业,大四):“股票我不太懂,也没有精力去经常盯着它,基金是因为学长在买,通过他知道的,然后就会看一下,觉得之前也挺稳定的,就买了点放在那里赚点收益。”受访者Y(外语专业,大三):“我是听从妈妈的建议买的基金,自己从小攒着的压岁钱放银行的利息比较低,股票专业性要求又比较高,风险大,所以买基金比较合适,也可以有收益。”受访者C(信息管理专业,研二):“我大概30%的钱用在基金上,大多数还是在银行卡里,毕竟现在没有赚钱能力,不能把所有的钱都放在虚拟的平台上,还会保留一些在银行卡里比较安全。”132023年中国大学生基金投资调查白皮书总体一线城市162023年中国大学生基金投资调查白皮书本次研究发现,学习理财知识、锻炼理财能力为大学生投资理财的最主要原因(占比65.7%),部分大学生认为大学期间做投资理财是进入社会前的一次预演,可以在投资理财过程中学习理财知识、锻炼理财能力、积累理财经验;另有部分与金融行业有关联的大学生,如大学课程涉及到投资理财、或参与了校园投资理财相关活动等,也希望通过实战演练,提升投资理财能力,积累相关实战经验。第四部分 投资动因学习理财知识及资产增值是大学生投资理财的主要动因受经济能力影响,大学生的投资理财本金主要来源于生活费结余、实习兼职所得以及奖学金、助学金等学业奖励等,其中生活费结余占比72.2%,为大学生最主要的投资本金来源。或受益于一线城市更丰富的社会资源及实习机会,超七成一线城市的大学生投资本金来源于实习兼职所得。其次,实现资产增值是大学生进行投资理财的另一重要原因(占比64.3%),多数大学生觉得钱存在银行利息过低,希望通过投资理财获取较高的收益。此外,进行资金管理(56.6%)、实现财务自由(51.8%)以及控制消费(44.5%)也是占比较高的投资动因。大学生投资理财本金主要来源吸引大学生投资理财的原因本次研究发现,“没有太多余钱”是该部分大学生未进行投资理财的主要原因(占比66.7%),这部分大学生或因大学阶段资金来源主要依靠父母,无太多资金可以用来做投资理财等原因所致;其次,没接触过投资理财(50.3%)、对投资理财产品缺乏了解(45.6%)、惧怕/厌恶投资理财风险(22.1%)等因大学生对投资理财认知不足,而导致大学生望而却步;此外,少数大学生也会因觉得麻烦(17.9%)而未做投资理财。第五部分 投资阻力巧妇难为无米之炊,资金不足成为首要投资障碍大学生未做投资理财的原因数据来源:2022年中国大学生基金投资行为调查问卷(N总体=4067;N一线城市=855)数据来源:2022年中国大学生基金投资行为调查问卷(N=4065)数据来源:2022年中国大学生基金投资行为调查问卷(N=195)152023年中国大学生基金投资调查白皮书生活费结余学习理财知识65.7%实现财富增值64.3%另一种形式的存钱56.6%实现财务自由51.8%控制消费44.5%抵抗通货膨胀28.4%实习兼职所得奖学金、助学金等学业奖励父母支持/资助学校补助受访者Z(电子信息工程专业,大三):“关于理财,我觉得自己已经长大了,还是有必要去了解一下的,感觉理财跟以后生活比较相关,目前我做投资理财也主要是想锻炼下理财能力,等毕业以后资金更多了,可以再更深入的了解。”受访者Z(英语专业,大三):“我主要是想赚取收益,满足日常消费需求,喜欢每天赚出一杯奶茶钱的感觉。”受访者L(日语专业,大三):“我上大学后做家教赚了点钱,钱越攒越多了,就想要不要拿一部分出来投资,看看能不能赚点钱。”没有太多余钱没接触过投资理财对投资理财产品缺乏理解惧怕/厌恶理财风险懒得折腾觉得麻烦金融机构推出的理财产品没有吸引力66.7P.3E.6.1.9%3.1r.2q.6i.8v.3c.2f.4V.7a.1$.3$.9%从不同城市层级看,城市层级越高,未投资比例越低。一线城市大学生中未做过任何投资的比例最低,仅2.4%,且随着城市级别的下降,未做过投资的大学生比例逐渐上升。不同城市等级的大学生未做过投资理财的人数占比数据来源:2022年中国大学生基金投资行为调查问卷(N一线=875;N新一线=1461;N二线=684;N三线=443;N四线=280;N五线=104)2.4%一线城市新一线城市二线城市三线城市四线城市五线城市2.9%4.8%7.0.0.52023年中国大学生基金投资调查白皮书大学生投资理财实际收益情况本次研究发现,近五成(48.4%)大学生投资理财有盈利,且有超四成(45.9%)大学生处于“暂时不亏”,多数大学生在投资收益方面未亏损;或由于基金是大多数大学生投资的主要理财产品,大学生整体投资收益情况与基金收益基本保持一致。第六部分 投资收益多数大学生目前投资无亏损整体收益基金收益数据来源:2022年中国大学生基金投资行为调查问卷(N整体=4067;N基金=3613)20%以上1.6%1.4%-20#.5!.4%跑赢通胀23.3%.4%暂时不亏45.9D.3%亏损5.8%7.5%本次研究发现,近九成(89.2%)大学生对基金有一定认知,但仅不到三成(29.6%)大学生对基金非常了解,多数(59.6%)大学生对基金的认知都处于“知道但了解不深”的状态。而大学生对于基金的认知整体集中在行业、收益及持仓等基本面方面,对基金公司品牌印象的认知较集中在基金头部公司或支付宝等第三方资产管理平台热推的基金所属公司,对于海外基金及品牌的认知更是寥寥无几。大学生基金认知度第一部分 基金认知知晓率高,了解度低02 大学生基金投资现状了解不深59.6%非常了解29.6%仅听说过,不了解没听说过0.3.5%数据来源:2022年中国大学生基金投资行为调查问卷(N=4262)受访者Z(信息工程专业,大三):“我对基金的了解基本来源于支付宝页面展示的信息,公司品牌不怎么关注,可能会在基金名字或者热门推荐上看到,但印象也不太深。”受访者C(信息管理专业,研二):“我听说过一些比较热门的基金公司,他们有几只明星基金,听说收益蛮高的,但我没有详细了解过,个人更关注产品;海外基金及品牌没有听说过。”172023年中国大学生基金投资调查白皮书192023年中国大学生基金投资调查白皮书本次研究发现,多数大学生认为基金收益相较银行理财或储蓄较高,而风险相较股票较低,整体表现较为均衡,是比较理想的理财工具;从产品管理所需精力与能力来看,股票需要花费较多的时间和精力盯盘,对专业性要求也较高,而基金有专业人士(基金经理)管理,不用过多关注,比较省心;另外,外界环境对大学生购买基金也有一定影响,部分大学生会受到市场热度和周围人持有/推荐的影响,增加对基金的关注,从而购买基金。此外,本次调研发现,多数大学生对于基金类型关注度及了解度不高。除了金融相关专业的学生外,大多数大学生对于基金类型的认知有限,在购买基金时,更多受到平台推荐与宣传的影响。大学生持有的基金类型数据来源:2022年中国大学生基金投资行为调查问卷(N=3611)债券型基金78.2%宝宝类货币基金股票型基金ETF海外基金FOF56.7Q.8.1.7.5%第二部分 持基动因风险收益均衡,产品管理不操心,市场热度高受访者W(金融学专业,大四):“个人觉得大学生如果投资股市可能不太合适,风险比较大,而且忙于学业,没有太多时间去盯盘看,买基金会好一点,有基金经理来管理。”受访者Z(信息工程专业,大四):“感觉基金的收益相对储蓄高点,风险又比股票小一些,比较均衡。”受访者Z(信息工程专业,大四):“银行里有一些闲钱想赚点收益,基金市场热度蛮高的,身边朋友也很多人买,就去详细了解了下,感觉还不错就购买了。”出于规避风险考虑,货币型基金是大学生持有率最高的基金类型(78.2%),远高于其他类型基金,其次为股票型基金(56.7%)和债券型基金(51.8%)。本次研究发现,多数大学生投资风格偏保守型或稳健型,或因投资本金不多,对大学阶段的投资理财更多定位为对自身理财意识及习惯的养成、理财经验的积累,所以会更关注资金的安全性和收益的稳定性,以保本为主要目的,不会追求过高收益。第三部分 持基类型货币型基金居多,部分大学生不清楚所持基金类型受访者C(金融专业,大三):“我还是比较回避风险的,学过的专业知识告诉我金融学最重要的不是收益而是风险,如果没有很确切的把握的话,基本上投资就是一种赌博。”受访者C(信息管理专业,研二):“我不会去买那种短期收益高、风险也高的产品,并不是想通过这个赚大钱,只是想让自己有一个理财的意识,形成自己的理财习惯和积累理财的经验,等工作后把现在的经验作为参考,以后能更好地规划工资。”受访者Z(电子信息工程专业,大三):“现在还没有到赚钱的阶段,肯定是把钱大部分放到余额宝,虽然利息少点,但能够保本。”受访者C(信息管理专业,研二):“我没有了解是不是行业类或者偏债基的,只知道算是风险比较大的那种。”受访者C(金融专业,大三):“我不太关注类型,我比较关注行业,如果对某个行业比较信得过的话,会从那里入手,选行业类的或者行业下的指数基金。”受访者L(日语专业,大三):“我不太清楚是什么类型的,只知道是科技行业,没有考虑很多,支付宝上看到推荐就点进去了解了下,没有关注是什么类型。”202023年中国大学生基金投资调查白皮书222023年中国大学生基金投资调查白皮书212023年中国大学生基金投资调查白皮书大学生选择基金时的关注要素 TOP8基金过往业绩是大学生在选择基金时重点关注的因素,六成(61.1%)大学生会在购买基金时会关注基金的历史走势或收益,而过往业绩较好的基金则较受到大学生的青睐。而受到市场热度及互联网平台宣传的影响,行业发展前景是大学生关注的第二要素,占比59.1%,仅次于基金过往业绩,如新能源、光伏、医药、大消费、半导体等行业,也成为大学生热衷的选择。第四部分 选基考虑基金过往业绩、行业发展前景为大学生选基主要考虑因素大学生基金持有时间本次研究发现,近六成(59.6%)大学生基金持有时间在3个月-1年之间,其中半年至一年的持有者占比最高(33.4%),或受近年投资市场行情影响,伺机等待扭亏为盈;而仅有不到两成(19.8%)的大学生会持有基金一年以上。第五部分 持基时长以半年至1年居多,大学生整体基金持有时间不长数据来源:2022年中国大学生基金投资行为调查问卷(N=3612)受访者L(金融专业,大四):“我选产品就看过往的业绩走势,持续观察一段时间,看它的价格起伏,自己心理会做一个预估,在我认为处在一个低点的时候就买进,等它上涨。”受访者L(日语专业,大三):“我会比较关注历史收益,如果之前收益都比较好、稳定,会觉得这只基金挺好的。”受访者Z(英语专业,大三):“我主要关注行业,我持有的光伏、新能源、基建等行业基金都是之前市场上呼声比较高的。”61.1Y.1T.4I.3D.0A.51.70.8%基金过往业绩投资行业前景基金公司品牌和规模基金规模基金评级费率底层资产/持仓基金经理名气4.7.9&.23.4%几天内看涨/跌了就卖了三个月内3个月-6个月半年到一年一年到三年三年以上16.6%3.2%数据来源:2022年中国大学生基金投资行为调查问卷(N=3613)242023年中国大学生基金投资调查白皮书232023年中国大学生基金投资调查白皮书在购入基金时,六成(60.9%)大学生会综合各渠道观点,在认为时机合适时购入,具体如行情表现、产品历史走势、网络评论等;其次,近四成(39.7%)大学生有追涨习惯,会在基金持续赚钱时购入;另有近四成(37.4%)大学生会选择基金定投的形式,按计划买入基金;此外,也有少数大学生较为随性,会依赖亲友推荐或者本着“有钱就买”的原则进行投资。大学生基金买入时机大学生基金卖出时机数据来源:2022年中国大学生基金投资行为调查问卷(N=3613)数据来源:2022年中国大学生基金投资行为调查问卷(N=3613)第六部分 买卖时机理性至上,买卖参考多方观点,不贪恋高收益,近四成大学生偏好基金定投,超两成会长期持有基金在卖出基金时,超六成(62.4%)大学生会本着止盈原则,在收益达到自己理想预期时卖出基金;其次,超五成(53.1%)大学生会综合各渠道观点,在认为时机合适时卖出;此外,有超两成(22.6%)的大学生会长期持有基金。受访者L(日语专业,大三):“我基金已经持有了一年多了,收益挺稳定的,没有打算卖掉,除非很急用钱或者市场有什么大的风险,否则还是打算赚取长期收益的。”受访者Z(英语专业,大三):“我是通过支付宝购买的,因为支付宝比较方便,资金都在支付宝上,银行卡也是绑定支付宝,可以直接转;活钱一般也在余额宝上。”受访者C(金融专业,大三):“支付宝打开之后会有频繁的推送,可以很好的引流,在首页的推送和营销很容易点进去看,而且入口清晰,可以直接购买比较方便。”受访者L(日语专业,大三):“支付宝比较方便,平时钱都在支付宝里,能够直接购买。如果用其他的(APP),还要注册账号、绑定银行卡、转钱等,很麻烦。”60.99.77.4$.1!.5 .4%我综合各渠道观点认为可以购买时当我的基金持续赚钱时我是按计划定期扣款买基金(基金定投形式)当身边的亲友认为可以购买时不太看市场行情有钱了就会买一点当我的基金下跌时62.3S.1(.3.6 .5%当我的基金达到比较理想的收益时我综合各渠道观点认为可以卖出时当我的基金跌到我扛不住时准备长期持有目前还没有卖出过当身边的亲友认为可以卖出时支付宝等第三方财富管理平台是大学生最主要的基金购买渠道。调研数据显示,支付宝、微信理财通和天天基金等第三方财富管理平台是大学生基金购买的主要渠道(占比为83.7%);其次部分大学生也会通过银行APP(43.9%)、基金公司APP(41.4%)以及证券公司APP(30.8%)购买基金。从不同城市层级看,通过支付宝等第三方财富管理平台购买基金的大学生中,不同城市层级无明显差异,数据表现均较高;而在通过基金公司APP购买基金的大学生中,一线城市比例最高(占比50.5%),随着城市层级的下降,使用比例逐层降低。资金集中管理、操作便捷等是大学生选择基金购买渠道的主要考虑因素。本次调查发现,大学生选择购买平台的考虑因素主要包括以下五点:(1)资金集中在该平台上;(2)使用方便,不用额外注册开户,操作简单;(3)产品收益高,服务手续费低;(4)专业正规;(5)营销方式好:例如展示收益高、首页优质产品推送等。大学生基金购买渠道不同等级城市大学生通过支付宝等第三方财富管理平台购买基金的比例数据来源:2022年中国大学生基金投资行为调查问卷(N=3024)数据来源:2022年中国大学生基金投资行为调查问卷(N=3614)第七部分 基金购买渠道支付宝等第三方财富管理平台为主力购买平台,方便快捷为首要选择因素82.4.7.3.5.5%一线城市新一线城市二线城市三线城市四线及以下城市50.5A.29.38.04.8%一线城市新一线城市二线城市三线城市四线及以下城市83.7C.9A.40.8%2.6%第三方财富管理平台(如支付宝)银行APP基金公司APP证券公司APP线下渠道不同等级城市大学生通过基金公司APP购买基金的比例数据来源:2022年中国大学生基金投资行为调查问卷(N=1496)262023年中国大学生基金投资调查白皮书252023年中国大学生基金投资调查白皮书大学生未来继续投资基金意愿尽管市场波动较大,但未对大学生的购买意愿产生负面影响。调研数据显示,绝大多数(98.2%)大学生基金持有者未来依旧愿意继续购买基金。第八部分 未来投基意愿市场波动未打击购基意愿,未来继续购买基金意愿高受访者Y(外语专业,大三):“我还是会持续购买基金的,毕竟钱放着也是放着,而且将来工作后收入也会增多,可能会购买更多的基金,做好分配。”数据来源:2022年中国大学生基金投资行为调查问卷(N=3614)数据来源:2022年中国大学生基金投资行为调查问卷(N=4069)考虑98.2%不考虑1.8%调研数据显示,近七成(67.2%)大学生“会提前设计好投资计划,然后按照计划配置基金”。或受限于目前资金有限,多数大学生的基金投资规划内容并不会做得详细、复杂,但也不会盲目设计,而是会在投资前关注产品信息,包括历史收益、基金经理、主要持仓表现、重大事件等,通过行业研报、经验及网络讨论等综合判断后决定是否进行投资。大学生基金投资习惯多数大学生在基金投资前会提前做好合理的规划配置,规划内容主要聚焦在基金本身表现及所处行业/市场情况03 大学生基金投资习惯会提前计划,然后按照计划配置基金没有计划,有钱时才会主动了解较热门的基金,然后详细了解基金信息后决定是否购买没有计划,有钱时会咨询身边亲友,购买他们建议的产品没有计划,有钱时直接购买当下比较热门或者周边朋友都持有的基金67.2%.9%4.7%2.2%受访者L(信息管理专业,研二):“我会先把关注的一些产品加入自选,看他们的表现,再根据过往经验和网络上的舆情,来判断怎么购买和分配。”受访者L(财务管理专业,大三):“我会比较关注产品,对比一下同样类型的不同产品,主要关注行业走势、行业政策、网友的分享笔记、收益率、折线图等等。”受访者L(日语专业,大三):“我现在钱比较少,不太会提前做比较详细具体的规划,但如果以后投资数额比较大的话,肯定会提前做好更详细的规划。”大学生基金投教需求超九成大学生有过投资理财的困扰,其中不确定买入/卖出时机和不知如何挑选/合理搭配理财产品是大学生最常见的理财困扰。大学生在投资理财时,因市场波动大导致买卖时机难以确定、挑选/搭配理财产品困难等是大学生在投资理财时主要面临的两大难题。在大学生投资理财困扰中,超四成(44.5%)大学生表示难以把握买卖时机,在基金上涨或下降时不确定是否是合适的买卖时机,在买入或卖出时犹豫不决;另有超四成(44.1%)大学生在产品选择方面,不清楚如何选择一支优质的理财产品,比较困惑挑选基金的标准。大学生投资理财的困扰数据来源:2022年中国大学生基金投资行为调查问卷(N=4067)第一部分 投资困扰买卖时机、产品选择为主要困扰282023年中国大学生基金投资调查白皮书272023年中国大学生基金投资调查白皮书拨云见雾第二章01 大学生基金投资知识需求受访者Y(外语专业,大三):“之前那只基金涨了,想卖了,但是妈妈说会翻倍,后来亏了,不知道当时是不是应该卖掉那只基金亏损的时候也往里补了一点,但是不知道这么做是不是正确的。”受访者Z(英语专业,大三):“不太清楚选基标准,比如同样主题的基金产品该如何选择”市场波动大,不知道什么时候买入/卖出不知怎么合理挑选/搭配理财产品针对当下现状,不知如何合理进行资产配置基金表现差,不知道该卖出还是坚持银行理财收益低,找不到合适产品替代随大众入市,盈利比较一般看不懂股市/市场行情不知怎么选择基金经理没有遇到过困扰44.5D.15.85.04.32.3).7 .3%5.202023年中国大学生基金投资调查白皮书292023年中国大学生基金投资调查白皮书除此之外,不知如何合理进行资产配置、基金表现差时不知是否要卖出、无合适产品替代收益低的理财产品、理财收益一般、看不懂市场行情、无法识别网络理财信息真伪等也为目前部分大学生存在的投资理财难题,而这或与大学生理财知识/技能缺乏、导致其在实际理财投资时无法面对行情态势变化时做出应对反应有关。从数据表现看,仅约5%的大学生表示没有遇到过理财困扰,大部分大学生面临理财困扰。受访者L(财务管理专业,大三):“有些人不是完全靠知识和讯息去做投资理财和判断的。对我来说有时候看到这个讯息可能也判断不出来以后的走向,但是有些人看到这个讯息就可以判断出来。”受访者C(信息管理专业,研二):“无法分辨网上的大V是否真的有专业资质,缺乏实操类专业知识。”在大学生理财知识的需求中,超六成(61.3%)大学生表示行情分析策略在投资理财的过程能起到很大作用,能帮助他们判断理财产品的未来走向从而做出下一步判断,具体内容可以包括相关利好政策、国内外的形势对比、行业发展史、未来预测的相关信息、判断基金质量和未来发展的方法等。受访者L(日语专业,大三):“不知道哪些是现在发展比较好的,以后更有潜力的行业。行情分析策略还是很需要的,比如说如何判断基金好不好,如何判断它的未来行情发展趋势等等。”受访者Z(英语专业,大三):“想看到一些行情分析,比如有哪些利好政策、国内外的形势对比等。还有行业发展史及未来预测的相关信息也比较需要。”此外,交易操作技巧、投资理财基础知识科普、持有产品分析、财产安全类科普(如账户安全、持有资金安全、警惕金融诈骗等)、热点解读分享、宏观资讯分析、实操类经验分享等也是目前部分大学生所需要的理财知识,这些知识和资讯可以帮助大学生在投资理财过程中获得更加客观理性的参考资料,以便于进行综合性判断。受访者C(信息管理专业,研二):“想要学实操方面的知识,比如基金怎么分配、怎么看走势等,这样以后做理财会更有行业专业的判断。”受访者L(金融学专业,大四):“希望获得一些宏观的资讯,比如我会对于行业、个股、突发事件、大盘冲击的相关资讯比较关注。”受访者Y(外语专业,大三):“行情、经验、实践方面的分享比较需要,一些基本专业知识会从妈妈那边了解。”受访者Z(电子信息工程专业,大四):“基金的形势跟当前的一些重大事件有关的热点新闻可能会比较关注。”受访者L(日语专业,大三):“我还需要比较专业一点的和基金相关的知识,比如定投之类的。”另有近六成(57.2%)大学生表示关于优质理财产品的分析与介绍能为投资理财提供有价值的参考信息,具体内容可包括理财产品的组成、盈利机制等。受访者Z(电子信息工程专业,大四):“希望能更细致地介绍一些理财产品,比如介绍它的组成,它基金本身是怎么赚钱的这些。”数据来源:2022年中国大学生基金投资行为调查问卷(N=4262)行情分析策略优质产品分析交易操作技巧投资理财基础知识科普持有产品分析财产安全类科普热点解读分享61.3W.2R.5R.1Q.7P.2A.6%大学生有较强烈的理财知识需求,行情分析策略是超六成大学生目前最迫切需要的理财知识。大学生普遍存在补充和丰富理财知识的需求,并且更偏好实践方向的知识和经验分享,而非理论主导的专业知识内容。其中,行情分析策略和优质产品分析是大学生需求量最高的两类理财知识。大学生理财知识需求第二部分 投资知识需求行情分析策略需求最迫切322023年中国大学生基金投资调查白皮书从不同学历来看,行情分析策略是专科、本科和硕士生最需要的理财知识,而博士生最迫切需求的则是优质产品分析。其次相对来说,专科生更注重财产安全类科普和交易操作技巧;本科生则认为优质产品分析和交易操作技巧更重要;对硕士生来说,优质产品分析和持有产品分析能够提供更大的帮助;而博士生会更加需要行情分析策略和热点解读分享。大学生理财知识需求(按不同学历统计)数据来源:2022年中国大学生基金投资行为调查问卷(N=4262)数据来源:2022年中国大学生基金投资行为调查问卷(N=4068)受访者L(金融学专业,大四):“目前掌握的知识和技能能满足一部分需求,但因为不会去做很技术性的操作,比如量化什么的,再加上在学校学了分辨公司行业前景的知识,比较够用了,但是和实操还是会有一定差距。”受访者C(信息管理专业,研二):“现在了解到的是投资理财应该怎么操作、红线和底线应该怎么设置,而关于这个基金的持仓该怎么分配、怎么去看走势等专业知识目前还不具备。看过一些经验贴,但是受众是有多年经验的股民、基民,而自己近几年才进入这个领域,相关知识比较缺乏。”受访者Z(电子信息工程专业,大四):“我觉得我的技能和知识肯定是不够的,如果以后要做很深入的投资,就需要更多的理财知识,目前的简单理财差不多。”受访者L(日语专业,大三):“上课没有涉及相关知识,也没有参加相关活动;感觉自己好像没有掌握什么技能和知识,可能以后多一些实战经历就有经验了。”受访者Z(英语专业,大三):“我感觉可以满足日常需求,因为平时的投资也没有很高的专业性,而且购买的产品都是偏稳健型的,后续如果要买更专业的理财产品,目前的理财知识就不够了。”行情分析策略59.2a.4b.0W.1%优质产品分析47.6W.0a.4b.9%交易操作技巧53.6R.5R.4B.9%投资理财基础知识科普48.7R.4S.17.1%持有产品分析45.7Q.7T.6E.7%财产安全类科普54.3P.4G.6H.6%热点解读分享38.6A.7A.9Q.4%专科在读本科在读硕士在读博士在读仅15.9%的大学生表示理财知识/技能掌握丰富,大学生整体投资理财知识/技能掌握不足。本次研究显示,理财知识掌握尚可的情况在大学生群体中占大多数(58.9%),仅仅可以应对简单理财产品的日常操作,针对复杂情况则较难决策;其次,有超两成(25.2%)大学生表示自己理财知识/技能掌握不足,其认为仅凭自己目前掌握的投资理财知识无法满足投资理财需求,目前仅处于小金额试水阶段,实操经验不足,无法支撑实际的投资理财,日常投资仍需要依靠身边朋友或大V建议。从数据显示来看,仅有15.9%的大学生表示理财知识/技能很丰富,可以完全满足自身的投资需要。大学生整体投资知识掌握情况有待进一步提升。大学生投资理财知识掌握情况第一部分 知识掌握情况一知半解,理财技能有待进一步提升02 大学生基金投资知识掌握现状理财知识/技能丰富理财知识/技能尚可理财知识/技能较少完全不了解理财知识/技能15.9X.9#.2%2.012023年中国大学生基金投资调查白皮书342023年中国大学生基金投资调查白皮书332023年中国大学生基金投资调查白皮书数据来源:2022年中国大学生基金投资行为调查问卷(N=4069)会向有经验的人学习77.4%近九成的大学生认为学习投资理财知识是很有必要的,并且向有经验的人学习是超七成大学生的首选方式;而目前校内理财课程安排较少,占比仅两成。本次研究显示,九成(90.1%)大学生有计划学习投资理财相关知识,其中直接向有投资理财经验的人请教是大学生的首要学习方式(77.4%),而市场上的投资理财课程成为了大学生群体的次选,占比55.3%。同时在调研中了解到,经验分享类的课程/文章对大学生也更有吸引力,相比枯燥的理论学习,他们更偏好向有经验的人学习投资思维和逻辑的解读,获取实战类的投资理财知识和技能。另本次调研发现,学校存在理财教育缺失、覆盖范围不足的情况,只有两成(21.4%)大学生能够在校内接触到理财相关的专业体系课程。大学生投资理财知识学习偏好第二部分 理财知识学习偏好以往鉴来,向有经验者请教为主要学习方式超九成大学生有自己偏好的知识获取渠道,其中投资理财平台和社交平台资讯是最受欢迎的两类渠道。研究数据显示,大学生更加偏好通过基金/证券/银行/互联网金融等投资理财平台和社交平台(如微信、QQ、微博、知乎、小红书等)等获取投资理财知识/技能,两类平台信息获取便捷,品牌公信力也较好,最受大学生群体青睐。其他渠道如财经媒体(新华财经、新浪财经、和讯网等)、金融理财类信息供应商(同花顺、天天基金、雪球等)、短视频平台(如抖音、快手等)等渠道也受到多数大学生的喜爱,此类平台兼顾了专业理财知识的传授和实战经验的分享,且方便实用,大学生日常使用频率高,更能满足他们的需求。大学生投资理财知识获取渠道第三部分 基金投资知识获取渠道投资理财平台、社交平台为主要渠道会了解投资理财课程55.3%学校已有安排相关课程21.4%没太大必要,靠实操经验9.9%受访者Y(外语专业,大三):“我日常在平台浏览,如果有推送的日志、帖子会点进去看;对经验分享比较感兴趣,比如什么样是优质基金以及投资理财的成功案例等等,像单纯的理论课程就不会去看。”受访者C(信息管理专业,研二):“我对于基金表现的解读比较需要,比如在实际操作中怎么判断近7天表现比较好的基金,想学习下他们的投资逻辑。”数据来源:2022年中国大学生基金投资行为调查问卷(N=4068)投资理财平台社交平台财经媒体金融理财类信息供应商短视频平台长视频平台各类专业投资书籍学校提供的投资理财类课程亲友介绍/传授55.8T.8P.0H.4E.67.66.00.9&.3%凭感觉投资1.062023年中国大学生基金投资调查白皮书此外,大学生认为目前投资者教育还存在形式过于枯燥(33.5%)、展示内容不符合自己的需求(27.3%)等问题,希望能让展示形式更加通俗易懂,并且增加一些关于“怎么做”的知识分享,而不是理论知识的堆砌。大学生投教信息认知现有投教问题第一部分 投教服务体验知晓度高,但体验评价不高1.投教认知:大学生对投教服务整体知晓度高03 大学生基金投教服务体验与需求有接触过投教信息没有接触过投教信息71.8.5%没留意过16.8%数据来源:2022年中国大学生基金投资行为调查问卷(N=4069)数据来源:2022年中国大学生基金投资行为调查问卷(N=2920)本次研究发现,仅有0.8%的大学生对投资者教育不感兴趣,几乎所有大学生都关注过投教内容,且遇到过各类问题。数据显示,五成(51.6%)大学生表示投资理财平台上的投教信息展示很分散,不便于自己系统学习投资理财知识;其次,超四成(46.8%)大学生表示投教内容包含太多专业术语,作为一个投资理财知识/经验储备不足的大学生投资者,难以理解其中含义。此外,信息查找困难(36.4%)、投教内容易与营销信息混淆(35.5%)、广告植入过多(35.0%)等也是大学生认为目前投教工作存在的几个主要问题点。本次研究显示,七成(71.8%)大学生接触过投资理财平台上的投教信息,投教认知度高。以大学生投资渠道中使用率高的支付宝为例,支付宝提供的投资风险评估、科普类文章和理财教学等投教信息被多数大学生所留意。2.投教问题:几乎所有大学生都关注过投教内容,而内容分散、无吸引、阅读困难、形式枯燥等为目前投教主要问题受访者C(信息管理专业,研二):“有些平台会在我最开始买基金前给一个测评,然后他如果测出来了什么类型的,会给你一些解释,然后也比较推荐人去定投,会专门开一个板块,如定投有什么优势。”受访者C(金融学专业,大三):“有些平台上有一些科普文,展示基金是怎样计算费用的等基础知识。”受访者L(财务管理专业,大三):“投教内容有很多专业术语,太枯燥了。我刷到的都是教怎么防范风险,也有一些简单的介绍,但是没有教去怎么做,只是告诉了理论知识,希望能多一些关于怎么做的分析。”受访者C(金融学专业,大三):“对目前平台上的投资课程不是很感兴趣,但是自己想听的内容很难落地,如在选择一个基金的时候要考虑什么东西、怎么分析财报等。”受访者L(财务管理专业,大三):“小红书和东方财富上面会刷到(投教信息),但不是很多,偶尔会点进去,基本上因为没什么意思,就又退出来。”信息很散,无法形成系统学习专业术语太多,看不懂分布在平台各个地方,找起来麻烦分不清是投资者教育资讯还是产品营销,一般直接忽略有很多广告植入形式太枯燥,不想读推送的信息不是我喜欢的/关注的内容对投资者教育内容不感兴趣,不想琢磨51.6F.86.45.55.03.5.3%0.852023年中国大学生基金投资调查白皮书382023年中国大学生基金投资调查白皮书372023年中国大学生基金投资调查白皮书数据来源:2022年中国大学生基金投资行为调查问卷(N=4065)数据来源:2022年中国大学生基金投资行为调查问卷(N=4068)数据来源:2022年中国大学生基金投资行为调查问卷(N整体=4065;N男=1592;N女=2472)投教信息展示形式TOP6投教介绍人身份偏好专业投顾需求投教信息展示形式(按性别分类统计)第二部分 大学生基金投教服务需求 投教服务形式:真人形式及问答形式为主要形式偏好真人形式和问答形式是大学生投教服务主要偏好形式。研究数据显示,有近五成(45.9%)大学生更偏好真人视频形式,其次超四成(44.8%)大学生表示问答形式可以更好地满足自己的需求,另有超四成(42.8%)的大学生喜欢直播的展现形式,其他如动画视频形式等也是部分大学生较喜欢的展示形式。从此看出,大学生希望投教信息展示形式能够使其内容更加通俗易懂且便于阅读观看和理解,另外这些形式也提供了与他人互动交流的平台(如视频评论区、讨论区等),便于大学生获取适合自己的经验和知识。介绍人身份偏好:实战经验丰富的投资分析师更受大学生的青睐近六成(58.8%)大学生更偏好实战经验丰富的知名投资分析师来进行投教信息的介绍与分享,或因其身份所附带的经验和资历让大学生认为值得信赖;其次,各有超半数的大学生偏好平台理财经理(54.0%)或持有产品相关的行业专家(51.4%)来进行投教介绍,此类介绍人兼具专业知识和实践经历,更能获得大学生的认可。专业投顾需求:近九成大学生有专业投顾需求研究数据显示,近九成(89.5%)大学生表示需要专业的投资顾问给予投资建议与指导;剩余10.5%的大学生或因目前投资资金少、偏向自己学习和操作等原因表示不需要专业投资顾问的帮助和建议。整体而言,大学生更看重介绍人是否有丰富的投资理财经验和成功案例,而不是单纯根据其专业知识是否广博或者身份是否专业来做出判断。此外,对介绍人的表达能力和讲解内容也有所要求,最好能通俗易懂,而不只是单纯理论知识的讲解。从不同性别来看,男女生都会将真人视频形式作为投教信息展示形式的首选。其次,男生更喜欢直播形式,而女生更偏爱问答形式。真人视频形式问答形式直播形式动画视频形式社区论坛形式长图文形式真人视频形式问答形式直播形式动画视频形式社区论坛形式长图文形式45.9D.8B.89.56.44.6%男女知名投资分析师(如券商首席分析师等)平台理财经理所关注/持有理财产品的行业专家经济学教授/学者雪球、天天基金等专业投资信息平台的投资大V/资深投资者抖音、小红书等社交平台人气投资UP主财经评论员58.9T.0Q.4D.9B.35.95.0E.3F.3%受访者J(金融学专业,大四):“有实践经验的比教授好一些,教授的实操经验不足,不是所有教授都投资,而且投资的收益率也不高。”受访者Y(外语专业,大三):“只要成功案例多,经验丰富,口碑好,大众评价好的(介绍人)就可以,无论具体是什么身份;如果单单一个专家可能不太相信,要多方面佐证。”受访者C(电子信息工程专业,大三):“(介绍人)要有一定专业水平,但是作为小白,也很难分辨他是不是真的有专业能力。此外,如果他讲的很专业,晦涩难懂而且学习门槛很高的话就不太愿意。”受访者L(金融学专业,大四):“偏好知名投资分析师、业界专家之类的,他们日常工作就是在接触这些投资产品,虽然学者知识储备很丰富,但是会考虑他们的知识和实操是否会有脱节。”需要89.5%不需要10.5%数据来源:2022年中国大学生基金投资行为调查问卷(N=4263)43.1E.9A.36.6A.46.96.05.24.3E.12023年中国大学生基金投资调查白皮书大学生基金投教建议在证监会有关部门统一部署指导和行业机构的积极参与下,自2021年正式启动以来,“一司一省一高校”投资者教育活动取得了良好效果。在后续大学生投资者教育工作中,可以持续推进“一司一省一高校”的投资者教育活动,积极促进基金公司与高校开展深入合作,倡导将投资者教育纳入国民教育体系,提升当代大学生的理财意识,建立科学的人生投资规划。具体工作可从以下方面展开:有的放矢第三章01 持续推进“一司一省一高校”投教活动,推动投资者教育纳入国民教育体系392023年中国大学生基金投资调查白皮书由中国证券投资基金业协会牵头,搭起各基金公司参与主体与高校之间的合作桥梁,在此基础上开展高校大学生的投资者教育工作,发动行业力量共同发展。各基金行业参与主体作为基金行业的实践者,其丰富的行业实战经验可与高校教育之间形成有利互补。各基金行业参与主体分为活动主办方、协办方和支持方三类:活动主办方为公募基金管理人、证券公司、基金销售、投顾、评价机构等主体,负责在高校具体开展相关投资者教育活动。活动协办方主要为商业银行地方分支行,证券公司的分公司、营业部,以及基金管理人的股东方、上市公司等,利用各自优势,协助开展相关活动;活动支持方主要包括证监会相关派出机构及系统单位、地方协会(负责牵头联系,给予参与机构必要的支持)和相关媒体(主要负责线上投教、宣传等活动)。通过多方通力协作,助力大学生投资者教育工作持续且良性推进。(一)平台搭建搭建基金公司与高校之间的合作桥梁,推动各基金行业参与主体协同合作,开展大学生投资者教育大学生是投资者教育的重要群体。基于前两章对于大学生基金投资困扰及对投资者教育需求的梳理,各投资市场参与方应积极响应,开展多元化、丰富性、定向化的大学生投教服务工作,做好大学生步入社会前的投资预演,以提升大学生投资理财意识、培养其投资理财习惯、帮助其投资理财知识及技能的积累,进而提高大学生的财商。422023年中国大学生基金投资调查白皮书受访者J(金融学专业,大四):“开设面向全校的(理财知识)课程,可以讲一些基本知识;但是在(金融学)院内开课可以讲得更深入。另外可以关注学院官方的宣传渠道,如学校职业发展协会、公众号、微信群、QQ群等可以利用起来,举办金融相关比赛。”受访者L(金融学专业,大四):“在课上学了分辨公司行业前景的知识,对我目前投资理财需求比较够用了,但是和实操相比也会有一定差距。”受访者L(财务管理专业,大三):“希望有实战类的课程,会更有体验感。但是只有实操也不行,肯定是要边实操边分析才行。”受访者Z(英语专业,大三):“学校的金融课程偏向宏观的货币政策等,比较基础。也有股票的课,但是因为需要实地操作,受疫情影响没有开课,我还参加过模拟的炒股活动,感觉还是有收获的。建议与学校合作开展类似投资活动,表现优秀的可以得到奖金/实习机会等。”受访者W(金融学专业,大四):“我关注了一些券商、资管和知名大V的微信公众号,看它们发出来的研报。也会在雪球APP和东方财富网上看财报,在做项目的时候需要一些数据。”受访者Y(外语专业,大三):“我比较偏好在B站上金融类的讲座,或者他们分享的知识和专栏。”受访者L(财务管理专业,大三):“我会在小红书上看他们分享的投资经历以及一些基金定投相关的专业知识等等,趣味性没有很强,但是部分内容还是浅显易懂的。”除开展投教活动外,根据大学生偏好的投资者教育模式,可推进大学生投资者教育成为国民教育课程,具体课程配置可从以下维度考虑:1)课程内容上,根据大学生金融理财知识掌握程度不同,可开设差异化、阶梯式的课程体系,课程包括但不限于:投资理财基础知识培训、行业分析策略解读、宏观资讯分析、基金配置与选择、基金走势解读、未来行情分析、投资实战模拟等;2)开课形式上,可为专业课程(含在线开放课程)、虚拟交易实操、社会实践、公益讲座、投资理财比赛等形式;3)在授课老师方面,由实战经验丰富的投资分析师或理财经理作为授课人更容易获得大学生群体的青睐,授课人是否拥有成功经历和良好口碑是其关注的焦点。本次研究发现,针对理论基础薄弱、非金融相关专业的大学生,更偏好投资理财基础知识相关课程,以增加自身在相关领域的知识储备;而针对有一定投资经验或金融相关专业的大学生,则更偏好行业分析策略、投资实战模拟等实战类课程,可更丰富其在投资理财方面的实操能力。(三)课程开设推进投资者教育纳入国民教育体系,开设相应的投教课程02 开展因人制宜的大学生投教工作除与高校合作开展投教工作外,金融机构自身可结合前章关于大学生的投资困扰及投教需求,从以下维度开展大学生投资者教育工作:结合大学生投资理财知识及技能掌握程度的差异性,提供差异化、个性化、简明易懂的进阶投教服务尤为必要。针对投资经验及技能不足的大学生,投资者教育服务更多侧重于投资理财基础知识科普、投资理财策略、产品选择考虑、交易操作技巧等内容,便于其进一步了解投资理财市场及平台、产品属性等,以提升其投资理财能力。针对有一定投资经验的大学生,则可提供进阶的多元化、差异化、个性化的行业知识或实时资讯等,如提供特定行业分析策略、优质产品分析、行业热点解读等,便于不同投资经验的大学生根据自身所需,及时获取相关信息。而在投教信息展示上,考虑大学生投资理财知识各有不同,在信息展示上尽可能使用简明易懂的文字表达,避免因文字内容专业、晦涩而导致可阅读性差、理解困难的问题。(一)投教知识体系提供差异化、个性化、简明易懂的投教服务在自有平台的投资理财区域,设置专属的投资者教育板块,并形成醒目指引。超五成大学生认为目前投资理财平台上的投教信息展示分散,无法形成系统学习;其次有超三成大学生反映投教信息分布在平台各个位置,找起来麻烦;另有超三成大学生表示因分不清是投教资讯还是产品营销而直接选择忽略。针对这三种情况,各大金融机构及相关行业需进一步优化平台投教服务,设立专属的投资者教育板块,改善信息展示,且在投资理财区域提供醒目指引,便于大学生用户快速查找到相关信息,学习相关理财知识及资讯。在年轻群体聚集平台开展投资者教育服务,进行投教宣导。除自有平台外,社交平台、长/短视频平台等也为大学生投资理财知识常用渠道。在大学生聚集平台,如抖音、快手、B站、小红书、微博、微信等,各金融机构及相关行业可通过开设账号,通过日常发布视频或图文形式进行投资者教育服务,以更全面触达大学生群体,提升其对投资理财的关注度及理财感知。(二)投教渠道自有平台设置专属板块,外部平台延伸拓展412023年中国大学生基金投资调查白皮书“一司一省一高校”投教活动需针对高校大学生的特点进行差异化设计,内容包括但不限于:投资理财基础知识讲解、理财思维建立及理财规划、金融理财工具介绍、行业分析策略解读、金融诈骗案例分享等。通过多样化的内容设计,以满足金融理财知识与技能掌握程度各异的大学生投教需求。(二)内容设计针对高校大学生特点,设计针对性的活动主题432023年中国大学生基金投资调查白皮书442023年中国大学生基金投资调查白皮书当代大学生养老规划未雨绸缪特刊本次研究发现,超三成大学生反映目前看到的投资者教育形式枯燥,不愿意阅读。针对这一问题,在后续投教工作中可提供更加多元化、符合大学生偏好的投教宣导形式,以吸引其浏览、阅读。信息易获取、易理解的投教形式更受大学生偏好。经研究发现,各有超四成大学生更偏好真人视频、问答及直播形式,其他如动画视频、社区论坛等也是部分大学生的比较喜欢的展示形式,可根据投教内容的内容属性,选择适配性的展示形式。随着人们生活质量的提高和人口老龄化问题的日益加剧,医疗、教育和养老已经成为这个时代的热门话题。2022年政府工作报告 多次提及“养老”话题,“积极应对人口老龄化”已上升到“国家战略”的重要地位。此外,全国两会上“养老”也成为热门议题,提案覆盖了智慧养老、适老化、养老人才队伍建设等方方面面,引发了社会高度关注。同时,2022年4月,国务院办公厅发布 关于推动个人养老金发展的意见,由政府政策支持、个人自愿参加、市场化运营的个人养老保险制度正式落地,为推进多层次、多支柱养老保险体系建设,促进养老保险制度可持续发展,实现资本市场服务养老事业,提供了新的支持与方向。政策的推动和社会的热议,让“养老”话题进入家家户户,同时也引发年轻群体的关注。本次也面向大学生群体,针对养老话题做了初步的摸底调研,旨在了解当代大学生的养老意识及规划,以便以投资理财的角度为大学生未来养老提供更多的帮助。(三)投教形式提供多元化的投教宣导形式,满足大学生个性化需求研究发现,大学生更偏好有着丰富实战经验、有成功案例、对相关行业有丰富知识的投资分析师、理财经理或行业专家来开展投教服务,其中知名投资分析师最为抢手。因此,在投教分享人角色中,可重点邀请相关角色人员进行投教宣导,可提高对投教内容的关注度和参与度。(四)投教分享人角色邀请实战经验丰富的投资分析师进行投教宣导大学生作为投资市场的特殊群体,也是投资者教育的重要工作对象,投资者教育工作需要结合大学生的特性有的放矢,才能事半功倍,达到其所期望的目标价值。因此,需要投资市场各参与方从大学生特性出发,提供针对性的投教服务;并且,始终保持开放、持续的态度,不断追踪、更新大学生投资理财特点及其投教需求,优化、创新大学生投教服务,在投资市场用户的始端,促进投资市场的健康良性运转。462023年中国大学生基金投资调查白皮书得益于当今社会信息的高效传播,多数大学生会主动关注或被动接收到养老政策的相关信息。本次调研发现,近七成(67.3%)大学生会主动关注养老政策,其中23.3%的大学生会对政策做深入了解;另有近三成(28.8%)大学生也会在日常生活中接触到相关信息。大学生对养老政策的关注度整体较高,其中两成大学生会深入了解养老政策02 大学生养老意识规划当代大学生对养老有前瞻性认知,近七成大学生会考虑养老问题。调研发现,近两成(18.3%)大学生表示已对养老做出详细的规划或行动,并有五成(49.9%)大学生虽目前未做出具体规划或行动,但会考虑养老问题。第一部分 养老意识近七成大学生会考虑养老问题,其中近2成已做好养老规划01 大学生养老政策关注数据来源:2022年中国大学生基金投资行为调查问卷(N=4264)数据来源:2022年中国大学生基金投资行为调查问卷(N=4264)数据来源:2022年中国大学生基金投资行为调查问卷(N=780)大学生对养老政策的关注度大学生养老意识及规划为老年生活积累财富和配置保险保障是当前大学生养老规划的两大举措,其中通过投资理财获取收益是积累财富的主要手段。调研数据显示,近八成(77.8%)大学生计划通过投资基金/股票/债券等赚取收益来为老年生活提供经济保障;超六成(61.8%)大学生计划配置商业养老险/重疾险等保险产品来为老年生活提供保障;此外也各有超五成大学生计划通过设置专项储蓄或投资不动产而为养老做准备。第二部分 养老规划近八成大学生计划通过投资理财积累财富,来为养老提供资金储备大学生养老规划会主动关注,并会对养老相关政策做深入了解23.3%不怎么关注,会从日常生活中(朋友聊天等)获取部分信息28.8%会主动关注,但只做大致了解44.0%不关注,也不想了解3.8%有考虑规划,并且正在一步步落实中7.9%偶尔会考虑,但还没有行动49.9%已做好详细的规划,过几年准备开始行动10.4%还没想过养老,现在考虑太早了31.8%通过基金/股票/债券等投资,积累财富投资住房等不动产来获取收益设立专项储蓄通过配置保险(商业养老险/护理险/重疾险等)进行保障77.8a.3Y.5U.4E2023年中国大学生基金投资调查白皮书482023年中国大学生基金投资调查白皮书03 大学生养老工作建议鉴于目前大学生养老意识逐渐增强,但较少有人真正规划实施,因而在此阶段进行合理的引导,可以快速高效地帮助大学生树立正确的养老观,为以后养老规划的实施提供正确的方向。此外,由于大学阶段并未完全走入社会,对于社保养老金及商业保险的认知有限,因此大学生养老规划基本集中在通过投资理财积累财富为老年生活提供经济保障。然而受到个人在养老方面的认知及阅历限制,很多大学生对自己的资产规划、养老方向并没有清晰的思考,对于养老所需要的资金量、投资方法及方向也不太明确。因此,需要监管机构及各金融机构发挥各自优势,为当代大学生未来养老规划提供指引,具体如下几个方面。加强宣传教育,在主流平台普及养老政策及动向。根据调研显示,超七成大学生都会通过主动或被动的方式了解到养老政策的更新及发展动向。由此可见,平台的宣传以及热点话题的讨论都会对大学生的认知产生较大影响。因此,加强平台养老宣传,以简单直白的方式普及养老政策及行业动向,可以加速大学生养老意识的形成及养老观念的树立。定位大学生“以投资供养老”的需求,为大学生乃至年轻群体提供专属养老型产品。鉴于大学生投资及养老需求,可以为大学生设置专属养老型产品,如风险较为分散的组合型基金等,以期限长、风险低、稳健收益、操作灵活为主要特性,并在产品介绍及推广期间加强理财养老的理念灌输和知识普及,以助力大学生“以投资供养老”的养老规划进一步落实。结语472023年中国大学生基金投资调查白皮书随着互联网经济的快速发展和观念思维的转变,投资理财已不再只是高净值人群探讨的话题,逐渐全民化、日常化、年轻化。而当代年轻人的投资意识更为超前,已从传统的“储蓄理财”拓展到炒鞋、炒股、炒基金等,掀起了一波投资风潮。在此背景下,如何尽早尽快引导年轻人树立正确的投资观,已成为当前的热点话题,同时如何为年轻群体提供科学、健康的投资理财环境也是各大金融机构年轻化转型的重要方向。本次中国证券投资基金业协会、新华财经、摩根资产管理、上投摩根基金和蚂蚁投教基地联合发布 2023年中国大学生基金投资行为调查白皮书,从大学生视角深入了解其投资理财行为及习惯,挖掘其基金投资困扰,洞察其理财知识及技能掌握情况,从而以其需求为导向,为后续各市场参与方(如监管机构、证券基金等投资理财公司、第三方理财平台等)制定符合大学生需求的投资者教育计划提供参考,共同为大学生建立健康、稳定、可持续发展的投资环境。通过本次调查发现,在大学生群体中,投资理财观念已深入人心,绝大多数大学生都认为可以通过投资理财获取理财知识技能及实现财富增值。因此,虽然资金来源相对单一,且金额有限,但绝大多数大学生都有过投资理财行为,而基金则成为大学生最偏爱的理财工具。在收益和风险面前,大多数大学生属于风险回避型,更偏向稳健收益,因此货币型基金成为首选产品。而在投资基金的过程中,多数大学生尚未形式科学、自主的投资观念及技能,基金产品选择以及买卖时机把握成为主要难题。因此在投资教育的推广中,需重点关注大学生基金投资的困扰问题,以其偏好的经验分享、侧重实践为主要形式,提升大学生整体投资技能及素养。监管机构可积极呼吁投资市场各参与方做好投教工作,助力投教工作落实;而金融机构则需因地制宜、因材施教,在自有平台设置专属投教板块,提供差异化、个性化、多元化的投教服务及宣导,共同促进金融投资市场的良性运转。另外,本次项目也同步调查了大学生对养老规划的考虑,调研发现大学生对养老有前瞻性认知,多数大学生会考虑养老问题,对养老政策的关注度整体也较高。而针对养老规划,多数大学生计划通过投资理财积累财富,来为养老提供资金储备。因此,需要监管机构及各金融机构发挥各自优势,为当代大学生未来养老规划提供指引:一方面加强宣传教育,在主流平台普及养老政策及动向;另一方面,定位大学生“以投资供养老”的需求,为大学生乃至年轻群体提供专属养老型产品,以助力大学生养老规划进一步落实。492023年中国大学生基金投资调查白皮书项目课题组502023年中国大学生基金投资调查白皮书附录数据来源:2022年中国大学生基金投资行为调查问卷(N=4264)数据来源:2022年中国大学生基金投资行为调查问卷(N=4263)年龄结构性别结构样本结构1990年-1995年3.8S.1 00年以后43.296年-2000年女61.48.6%男数据来源:2022年中国大学生基金投资行为调查问卷(N=4264)数据来源:2022年中国大学生基金投资行为调查问卷(N=3552)学历结构性别结构专科在读6.3w.0%硕士在读15.9%0.8%博士在读本科在读大一8.7.6%大二大三35.9.8%大四/大五项目发起方中国证券投资基金业协会、新华财经、摩根资产管理、上投摩根基金、蚂蚁集团投资者教育基地调研指导单位中国证券投资基金业协会、上投摩根基金研究设计中国证券投资基金业协会、上投摩根基金、零点有数问卷投放及数据采集中国证券投资基金业协会、新华财经、上投摩根基金访谈执行及报告执笔零点有数报告联合发布中国证券投资基金业协会、新华财经、摩根资产管理、上投摩根基金、蚂蚁集团投资者教育基地
27人已浏览
2023-03-29 26页
5星级
深圳市计量质量检测研究院:国内外碳足迹标准现状研究报告(78页).pdf
国内外碳足迹标准现状 研究报告 深圳市计量质量检测研究院 2022 年 10 月 目录 目录 第一章 绪论.1 1.1 研究背景.1 1.2 目的意义.3 第二章 碳足迹评价方法.5 2.1 碳足迹的含义.5 2.2 碳足迹计算方法.5 2.3 小结.11 第三章 国外碳足迹评价标准与应用.12 3.1 标准现状.12 3.2 应用现状.15 3.3 小结.19 第四章 我国碳足迹研究进展.20 4.1 国外标准的转化.20 4.2 标准情况.20 4.3 应用现状.28 4.4 小结.29 第五章 结论与建议.30 5.1 结论.30 5.2 建议.30 附件 1 典型国家和地区碳足迹标识实施情况.32 1 第一章 绪论 第一章 绪论 1.1 研究背景 20 世纪末以来,由温室气体排放所引起的全球变暖、极端天气频发等气候变化问题引起了国际社会的广泛关注。气候变化问题不仅是全球环境问题,更是涉及各国经济能否可持续发展的重大问题。发展低碳经济作为应对气候变化、促进可持续发展的一项战略选择,日益受到国际社会的高度重视,而发展低碳经济,离不开政策制度的创新。在此背景下,为减少温室气体排放,人们在国际、国家和区域等各层次上制定措施并采取行动,低碳技术系列新政策应运而生。其中制定碳足迹计算标准、建立碳标签制度等被认为是构建气候变化政策体系的一项重要内容。产品碳足迹是温室气体排放在产品层面的量化,在节能减排、产品制造、金融投资、国际贸易等方面的影响越来越大,在国际上已被广泛应用。通过对产品全生命周期碳排放进行计算分析,一方面可以全面、客观地审视产品全生命周期过程中能源与环境问题,从计算过程和结果中挖掘碳减排潜力,为企业持续改善工艺、开发低碳技术,向低碳生产方式转变,提高低碳竞争力提供内在支撑;另一方面,将产品的碳足迹信息以标识标签的方式告知公众,可以引导消费者2 的低碳购买行为,从需求端撬动供应端;再者,碳足迹作为一种市场机制,对于应对日益严峻的国际贸易壁垒具有重要作用。我国高度重视气候变化问题。2020 年 9 月习近平总书记在第七十五届联合国大会一般性辩论上向国际社会作出“碳达峰、碳中和”郑重承诺,并在气候雄心峰会上提出了具体目标。实现碳达峰、碳中和涉及能源结构调整、产业转型、经济增长方式转变,是一项系统工程,需要完善的政策、经济和技术顶层设计,需要政府、企业、消费者等各方面全方位配合,而制定标准是不可或缺的技术基础,标准可以对“双碳”工作进行引导和规范,助力碳达峰、碳中和的实现。2021 年10 月中共中央、国务院印发国家标准化发展纲要国家标准化发展纲要,提出完善绿色发展标准化保障,建立健全碳达峰、碳中和标准,加快完善地区、行业、企业、产品等碳排放核查核算标准加快完善地区、行业、企业、产品等碳排放核查核算标准。同年 12 月,国标委等十部委联合印发“十四五十四五”推动高质推动高质量发展的国家标准体系建设规划量发展的国家标准体系建设规划,在生态文明领域中明确提出建设碳达峰、碳中和标准,推动碳排放管理体系、碳足碳足迹、迹、碳汇、碳中和、碳排放权交易等重点标准制定。2022 年,国家发改委在促进绿色消费实施方案促进绿色消费实施方案提出“优化完善标准认证体系。制定重点行业和产品温室气体排放标准,探索制定重点行业和产品温室气体排放标准,探索建立重点产品全生命周期碳足迹标准建立重点产品全生命周期碳足迹标准”。粤港澳大湾区地处中国沿海开放前沿,经济实力雄厚,3 创新要素集聚,国际化水平领先,是中国开放程度最高、经济活力最强的区域之一,在国家发展大局中具有重要战略地位。目前,粤港澳大湾区产业结构处于向后工业化过渡的阶段,具备产业低碳发展的优势,与此同时,大湾区的低碳发展仍面临产业结构调整升级的诸多挑战,从产业结构来看,粤港澳大湾区是制造业重地,重污染、高排放的产能在不断淘汰,高新技术制造比重加大,传统产业不断改造升级。2019中共中央、国务院印发粤港澳大湾区发展规划纲要,明确提出粤港澳大湾区创新绿色低碳发展模式,挖掘温室气体减排潜力,推动粤港澳碳标签互认机制研究与应用示范。推动粤港澳碳标签互认机制研究与应用示范。2021 年深圳市政府印发深圳市生态环境保护“十四五”规划要求:探索建立产品碳标签制度,研究制定产品碳足迹评价探索建立产品碳标签制度,研究制定产品碳足迹评价标准体系标准体系。综上,为持续当好绿色低碳排头兵,深入践行粤港澳大湾区新发展理念,推动“双碳”工作引领示范,有必要开展国内外碳足迹标准现状及其应用研究,为后续建立碳标签制度打好理论基础。1.2 目的意义 本研究是粤港澳大湾区碳足迹标准体系建设研究项目的重要研究内容之一,通过开展国内外产品碳足迹标准及其应用的研究,分析碳足迹标准特征和标准之间的关系,梳4 理现有碳足迹相关标准,调研国内碳足迹标准的实际应用,为大湾区制定本土化的碳足迹标准的必要性和可行性提供参考。研究成果有助于大湾区建立适合产业发展的碳足迹评价方法和标准、为探索建立大湾区统一、完善的产品碳标签制度提供技术基础。5 第二章 碳足迹评价方法 第二章 碳足迹评价方法 2.1 碳足迹的含义 “碳足迹”起源于生态足迹的概念,最早出现于英国,并在学界、非政府组织和新闻媒体的推动下迅速发展。碳足迹主要是指人类生产和消费活动中所排放的与气候变化相关的气体总量,将全球变暖潜势(Global Warming Potential,GWP)作为温室气体排放量的表征。按照研究对象的不同,碳足迹可以分为国家/区域碳足迹、组织/企业碳足迹以及产品/服务碳足迹、个人碳足迹。对于产品而言,产品碳足迹考虑的是产品从生产到废弃回收全生命周期的碳排放。2.2 碳足迹计算方法 环境毒理学与化学学会(SETAC)与欧洲声明周期评价指导委员会于 2008 年讨论了碳足迹的计算方法及相关标准,认为依据 ISO14040 系列标准的生命周期评价法(Life Cycle Assessment,LCA)可以通过计算与产品相关的温室气体排放量,碳足迹可认为 LCA 中关于全球变暖潜力 GWP 的评价结果。目前碳足迹计算的方法主要有:一是“自上而下”模型,以投入产出分析为基础的投入产出法(Input-Output,I-O);6 二是“自下而上”模型,以过程分析为基础的生命周期评价法。2.2.1 投入产出法 投入产出模型是研究一个经济系统各部门间的“投入”与“产出”关系的数学模型,该方法最早由美国著名的经济学家瓦列昂捷夫(WLeontief)提出,是目前比较成熟的经济分析方法。Matthews 等根据世界自然基金会 WRI 和世界可持续发展商会 WBCSD 对于碳足迹的定义,结合投入产出模型和生命周期评价方法建立了经济投入产出-生命周期评价模型(EIO-LCA),该方法将碳足迹的计算分为三个层面,第一层面是来自工业部门生产及运输过程中的直接碳排放;第二层面将第一层面的碳排放边界扩大到工业部门所消耗的能源,具体指各能源生产的全生命周期碳排放;第三层面涵盖了以上两个层面,是指所有涉及工业部门生产链的直接和间接碳排放,也就是从“摇篮”到“坟墓”的整个过程。该方法可用于评估工业部门、企业、家庭、政府组织等的碳足迹。其计算过程包括以下步骤:(1)根据投入产出分析,建立矩阵,计算总产出。=( )=()?式中,总产出;单位矩阵;7 A直接消耗矩阵;y最终需求;A y部门的直接产出;A A y部门的间接产出。(2)根据研究需要,计算各层面碳足迹。第一层面:bi=Ri(I)y=Ri y 第二层面:bi=Ri(I A)y 第二层面:bi=Ri =Ri(I-A)?y 式中,bi碳足迹;RiCO2排放矩阵,该矩阵的直角线值分别代表各子部门单位产值的 CO2排放量(由该子部门的总 CO2排放量除以该子部门的生产总值得到);A能源提供部门的直接消耗矩阵。投入产出分析的突出优点是:利用投入产出表提供的信息,计算经济变化对环境产生的直接和间接影响,用 Leontief 逆矩阵得到产品与其物质投入之间的物理转换关系。该方法的局限性在于:(1)EIO-LCA 模型是依据货币价值和物质单元之间的联系而建立起来的,但相同价值量产品的生产过程所隐含的碳排放可能差别很大,由此造成结果估算的偏差;(2)该方法是分部门来计算 CO2排放量,而同一部门内部存在很多不同的产品,这些产品的 CO2排放可能千差万8 别,因此在计算时采用平均化方法进行处理很容易产生误差;(3)投入产出分析方法计算结果只能得到行业数据,无法获悉具体产品的情况,因此只能用于评价部门或产业的碳足迹,而不能计算单一产品的碳足迹。2.2.2 生命周期评价法 生命周期评价法(LCA)以过程分析为基本出发点,从产品端向源头追溯,连接与产品相关的各个单元过程(包括资源、能源的开采与生产、运输、产品制造等),建立完整的生命周期流程图,再收集流程图中各单元过程的温室气体排放数据,并进行定量的描述,最终将所有温室气体排放统一使用 CO2作为当量表征,即碳足迹。具体计算过程如下:(1)建立产品的全生命周期流程图 产品的生命周期涵盖商品从原材料开采(包括原材料的运输)、产品制造、商品流通销售、使用到最终废弃处置的整个过程。这一步骤需要尽可能将产品在整个生命周期所涉及的原料、活动和过程全部列出,一般从两个角度确定流程图。一是:从商业到商业(B2B)的流程图,包括原材料的开采、产品的制造及分配,不涉及消费环节。二是:从商业到消费者(B2C)的流程图,包括原材料的开采、产品的制造、分销、零售、使用、最终处置或再循环等阶段。(2)确定系统边界 确定边界是全生命周期评价碳足迹工作的一项重要内9 容,产品生命周期中不同阶段的边界设置将对应不同的活动内容和排放量。同时,重要性原则即设定一个阈值(1%)也是产品碳足迹评价中的一个重要的规定。如果在商品的全生命周期中某个排放源的排放量占该商品整个排放量不足 1%,则可认为该排放源重要性不足,其排放量贡献可以排除在碳足迹之外,但所有可以排除的各类排放源对应排放量总量不能超过整个产品碳足迹的 5%。重要性原则的引入在一定程度上能够降低收集数据的成本。(3)数据收集 在确定好边界后,需要对产品全生命周期中的每一个环节进行测量。计算碳足迹必须包括:一是产品生命周期中涉及的所有材料和能源(物料输入和输出、能源使用、运输等);二是排放因子,即单位物质或能量所排放的CO2等价物。一般情况下应尽量适用初级数据,使研究结果更为准确可信,但某些特定情况下,无法获取初级数据时,应根据数据质量要求,选择次级数据并在评价报告中解释说明数据来源和使用理由。(4)碳足迹计算 碳足迹的计算是将整个产品生命周期中所有活动的材料、能源和废弃物乘以其排放因子的和。产品生命周期各阶段碳排放计算公式如下:E=10 式中,E产品的碳足迹;i 物质或活动的数量或强度数据(质量/体积/千米/千瓦时);C单位碳排放因子(CO2当量/单位)。(5)结果检验 这一步骤是检验碳足迹计算结果的准确性,并使不确定达到最小化以提高碳足迹评价的可信度。提高结果准确度的途径有以下集中:用初级活动水平数据代替次级数据;采用准确合理的次级数据;改进碳足迹计算模型,计算过程更加符合现实并细致化;请专家审视和评价。以过程分析为基础的生命周期评价法计算较为精确,适用于不同尺度的碳足迹计算,主要使用企业第一手或第二手过程数据,能够获得特定产品高精度的碳排放结果,但也存在不足之处:(1)该方法需要界定系统边界,相当于客观上连续的生产工艺流程、供应链和生命周期人为截断,由此可能导致截断误差,较难确定误差的大小。(2)该方法允许在无法获知初级数据的情况下采用次级数据,因此可能会影响到碳足迹分析结果的可信度。因此,用 LCA 来估算碳足迹重要的问题是如何界定合理的系统边界,将截断误差降到最低。如果将 LCA 用于估算国家/区域、组织/企业或产业部门等实体的碳足迹,会遇11 到困难,估算过程中需要假设某个单个产品能够代表整个产品群的碳足迹,即使能通过生命周期数据库的信息进行推算得到实体的碳足迹估算值,得到的是一个拼凑的结果,而且需要使用不同数据库的信息,不同数据库数据信息口径通常不一致。2.3 小结 本章节介绍了碳足迹的含义,分析投入产出法和生命周期评价法两种常用产品碳足迹计算方法,指出不同方法的计算过程、适用性和局限性,在产业部门、经营活动或特定社会经济集团等计算碳足迹时,投入产出法具有一定的优势;生命周期评价法更适合考察微观系统,适用于特定的工艺过程、单个产品的碳足迹计算。12 第三章 国外碳足迹评价标准与应用 第三章 国外碳足迹评价标准与应用 3.1 标准现状 在关于碳足迹的计算方法中,由于生命周期评价法计算过程比较详细和准确,适用于微观层面碳足迹的计算,产品碳足迹计算多采用生命周期评价法。本研究聚焦于产品层面的碳足迹,因此针对生命周期评价法进行研究分析。目前,国际上使用较多的产品碳足迹评价标准主要包括有:(1)英国标准协会 BSI 发布的产品碳足迹评价标准 PAS 2050;(2)国际标准化组织推出的 ISO 14067;(3)世界资源研究所(The World Resources Institute,WRI)与世界可持续发展工商理事会(World Business Council for Sustainable,WBCSD)共同发布的温室气体核算体系(Greenhouse Gas Protocol,GHG Protocol);(4)日本的 TS Q0010-2009。(1)英国碳足迹计算准则 PAS 2050 PAS 2050商品和服务在生命周期内的温室气体排放评价规范(Specification for the assessment of the life cycle greenhouse gas emissions of goods and services)是由英国的碳信托以及环境、食品和农村事务部共同发起,由英国标准协会 BSI 制定,于 2008 年 10 月发布,PAS 2050:2011 是 PAS 2050:2008 的改进版,于 2011 年 10 月发布,是第一部通过统一的方法评价产品生命周期内温室气体排放的规范性文13 件。PAS 2050 以 ISO 14040 环境管理 生命周期评价原则与框架标准和 ISO 14044环境管理 产品寿命周期评价要求和导则所确立的生命周期评价方法为基础,提出相关性、完整性、一致性、准确性以及透明度五个原则,明确规定各种商品和服务的生命周期内温室气体排放的具体要求,适用于企业评价某种具体商品和服务的碳足迹,包括:从商业到消费者(B2C)的各类商品;从商业到商业(B2B)的各类商品;服务既可属于 B2C 类,也可属于 B2B 类。(2)国际标准化组织产品碳足迹标准 ISO 14067 由于各个国家或机构颁布的产品碳足迹评价标准和规范存在明显的理念和核算方法差异,且存在不同标准或规范核算的产品碳足迹结果难以有效比较的缺点,因此国际标准化组织 ISO 编制了产品碳足迹的国际标准 ISO 14067,2018年进行了修订,全称为温室气体产品碳足迹 量化要求和指南(ISO/TS 14067:2018 Carbon footprint of products Requirements and guidelines for quantification)。ISO 14067 主要规定了产品温室气体评价与计算程序、方法、原则与产品碳足迹报告等内容,其特点为:以生命周期评价方法作为产品碳足迹的量化方法,温室气体核算部分以及标识部分借鉴 ISO14064 系列标准(注:ISO 14064 标准共分三个部分:一是组织层面温室气体排放和清除的量化和14 报告规范及指南、二是项目层面温室气体减排和清除增加的量化、监测和报告规范及指南、三是温室气体声明审定与核查的规范及指南)和 ISO14020 环境标志和声明通用原则,其他相关内容借鉴 ISO14040 标准。(3)WRI/WBCSD 发布的 GHG Protocol 世界资源研究所(WRI)与世界可持续发展工商理事会(WBCSD)联合于 1998 年发起了温室气体核算体系倡议行动,目的是为企业及其他组织开发一套国际公认的温室气体核算和报告标准,并在企业、政府、非政府组织和其它团体中推广使用。为指导产品碳足迹工作,2011 年 WRI 和 WBCSD 联合制定,于 2009 年 11 月发布第一次修订稿,2010 年 11 月发布第二次修订稿,2011 年底发布最终版GHG Protocol:Product Life Cycle Accounting and Reporting Standard。该标准的制定主要参考了 ISO 14040、ISO 14044、PAS 2050 以及相关标准和公告,提供了一种详细的碳足迹评价和报告准则,协助企业开展产品生命周期温室气体核算。(4)日本 TS Q0010-2009 日本经济产业省 2009 年公布了 TS Q0010 产品碳足迹评估和标签的通则。该通则编制时参考了多个国家的环境标准和国际公约,并且随着技术的不断完善,与国际标准不断协调。通则范围包括产品的整个生命周期,并且规定了碳15 足迹的计算方式和碳标识方法等内容。配合碳足迹制度指导方针和PCR 制定准则等文件,日本多个产品陆续通过了认证。表表 3.1 不同生命周期产品碳足迹标准比对不同生命周期产品碳足迹标准比对 标准标准 ISO 14044 PAS 2050 ISO 14067 GHG Protocol TS Q0010 发布单位 国际标准化组织ISO BSI、Carbon Trust 国际标准化组织ISO WRI、WBCSD 日本工业标准委员会 温室气体种类 主要京都议定书要求的 6 类 IPCC的60多种(有 GWP 值)IPCC的60多种(有GWP 值)主要京都议定书要求的 6 类 主要京都议定书要求的 6 类 系统边界 依据研究目标和范围定,系统边界由计算结果和敏感性分析而定 从原材料到使用、废弃 从原材料获取到废弃,包括摇篮到坟墓,及摇篮到摇篮 从原材料获取到废弃,直接过程和间接过程,摇篮到坟墓,摇篮到大门 采购到废弃、回收 适用目标 B2B&B2C B2B&B2C B2B&B2C B2B&B2C B2C 取舍标准 基于物质、能量流动或环境显著水平 对碳足迹达到1%的实质贡献应包含在内,至少 95%的预期排放 基于物质、能量流动或环境显著水平 1%以上的实质贡献,通过上限假设来决定是否有意义进行报告 根据具体产品分类规则(PCR)而定 引用规范或标准 ISO14001、ISO14021、ISO14047ISO14040、ISO14044、IPCC ISO 14064、PAS 2050、GHG Protocol ISO 14040、ISO 14044、PAS 2050 ISO14040、ISO14044、IPCC 3.2 应用现状 在国际上,产品碳足迹评价和标识已被广泛应用。总体上看,英国、德国、法国、美国、日本、韩国等国家的碳足迹评价和标识发展比较迅速。3.2.1 英国 英国是全球最早推出产品碳标签制度的国家。英国16 Carbon Trust 公司于 2007 年 3 月试行推出全球第一批标示碳标签的产品,包括薯片、奶昔、洗发水等消费类产品。之后,Carbon Trust 公司加大了碳标签的应用推广,覆盖英国最大连锁百货 Tesco、可口可乐、Boots 等许多厂商。英国的碳标签包括碳足迹标签和碳减量标签,前者表示生产者已申请了产品的碳排放量核算,后者是由英国碳信托公司授权生产者在商品包装上标明其已消减温室气体的一种标识,表明生产者不仅作出减排承诺,并且已经成功减少温室气体排放。3.2.2 德国 2008 年 4 月,在世界自然基金会(WWF)、应用生态研究所等机构的共同发起下,德国启动了产品碳足迹试点工作,吸引了 BASF、DSM、Henkel、REWE 集团等众多德国企业参与,产品案例涉及绝缘材料、厕纸、冷冻食品、鸡蛋、咖啡、洗发水、洗涤剂、密封胶、包装硬纸盒、电话等。德国的产品碳足迹标签并未标识出具体的碳足迹数值,只表示该产品经过了碳足迹评估。3.2.3 法国 2006年法国Casino卡西诺超市推出“Group Casino Indice Carbon”碳标签,由 Bio 智能服务环境咨询公司开发的全生命周期计算方法推出,适用于所有 Casino 自售产品。Casino 公司邀请了约 500 家供应商参与了该碳标签计划,并为其提供了免费的碳足迹计算工具。据 Casino 公司统计,自碳标识推17 出以来,已减少了超过 20 万吨 CO2排放量。另一家超市来客莱 E.Leclerc 的碳标签计划由巴黎 Greenext 咨询公司开发,于 2008 年 4 月在其两个分店开始实施,覆盖了 2 万种产品。2009 年法国参议院通过了格勒诺环境法案“Grenelle 2”法案,法案规定从 2011 年开始实施,是世界上第一个强制性碳标签制度,规定必须通过标记、张贴或任何其他合理方式告知消费者产品及其包装的碳含量以及这些产品生命周期内对自然资源的消耗和对环境造成的影响。3.2.4 美国 美国已推出了三类碳标签制度。一是由 Carbon Label California 公司推出的碳标签,以全生命周期分析方法为核算准则,主要在食品中使用,如保健品和经认证的有机食品;二是为 Carbon Free 碳标识,由 Carbon Fund 碳基金公司推出的适用于碳中和产品的碳标签,核算准则为碳基金公司基于LCA 自行推出的碳足迹协议,产品主要有服装、糖果、饮料、电烤箱、组合地板等;第三个是 Climate Conscious 气候意识碳标签,由 Climate Conservancy 公司推出,基于全生命周期评价方法确立的核算准则,将碳标签的等级从高到低依次为金、银、铜,等级越高,产品的碳排放量也就越低,从而引导消费者在购买过程中选择等级高的产品和服务,培育低碳消费的生活方式。3.2.5 瑞士 18 瑞士的碳标识由企业自行发起,瑞士最大的连锁超市Migros于2007年启动了产品碳标识项目。顾客可以在Migros的一些自有品牌的产品上找到认证机构 Climatop 授予的碳标识。该标识不仅展示产品的碳含量,还证明贴有碳标识的产品比同类产品的碳效率高 20%。经 Climatop 标识核算的产品包括环保购物袋、有机原料蔗糖、奶油、洗衣液、洗衣服、卫生纸、洗碗巾、电池等。3.2.6 日本 2008年7月,日本内阁会议通过了“低碳社会行动计划”,该计划的内容之一,是使产品(或服务)的碳排放“可视化”,即通过计算产品(或服务)的 CO2排放量并在产品(或服务)上加贴碳足迹标签的方式向消费者明示产品整个生命周期的碳排放量,以此促进碳减排。为此,日本开展了为期 3 年的产品碳足迹试点项目。日本产品碳足迹标识基本规则包括三方面:一是原则上应把生命周期的碳排放量标示在每一个产品上,考虑到地区差异(多个生产地点)和季节差异,为节约成本和避免消费者混淆,统一产品应标示其碳排放的平均值;二是标示产品碳足迹组织应不断减少碳排放,但不强制规定其减排的具体目标,若组织有意愿向消费者宣告其具体减排目标,可授权使用附加和可选标识;三是采用统一标签。日本允许组织在某些情况下灵活对待碳标识基本规则,采取可选行动,如在碳标签上标示减排绿,标示不同过程(阶19 段)的碳排放等。3.2.7 韩国 2009 年韩国发布了碳标签认证指南 1、2、3,并开始实施碳标识制度,运行模式为政府支撑的市场化运行机制。韩国产品碳标识标出产品在生命周期(包括生产、销售、使用及废弃处置阶段)的温室气体排放量,其标识包括两种类型:其一为“温室气体排放量标志”,在标志上显示产品碳足迹,包括锅炉、水过滤设备、洗衣机、衣柜、洗发液、豆腐等在内的产品和服务获得了该类标志;其二为“低碳”标志,对获得“温室气体排放”标志的产品达到国家有关碳足迹的最低消减目标时,可获得“低碳”标志。3.3 小结 本章节介绍了国际上常用的碳足迹评价标准,包括 PAS 2050、ISO 14067、GHG Protocol 和日本的 TS Q0010-2009,简要分析典型国家碳足迹应用现状,碳足迹计算没有统一的技术标准,各国产品碳足迹计算准则基本上以 LCA 方法为主;一些是由国家推出碳足迹标准,一些是由企业单独制定碳足迹标准;标识所展示的信息包括碳足迹绝对值、碳足迹减排量、低碳标识、碳中和标识、碳等级标识等;验证机构有的是执行单位直接进行验证,有的是第三方验证。20 第四章 我国碳足迹研究进展 第四章 我国碳足迹研究进展 4.1 国外标准的转化(1)PAS 2050 2009年6月,在英国大使馆SPF基金项目“引入PAS2050对产品和服务的温室气体排放进行评价”的支持下,商品和服务在全生命周期内的温室气体排放评价规范及使用指南(2008 版)中文版正式发布。(2)ISO 14067 全国环境管理标准化技术委员会温室气体管理分技术委员会(SAC/TC207/SC7)在密切跟踪 ISO 14067 动向。4.2 标准情况 4.2.1 国家标准(1)标委会设置情况 2008 年 10 月,经国家标准委批准,同意成立全国环境管理标准化技术委员会温室气体管理分技术委员会,其编号为 SAC/TC207/SC7,英 文 名 称 为 Subcommittee 7 on Greenhouse Gas Management of National Technical Committee 207 on Environmental Management of Standardization Administration of China。全国环境管理标准化技术委员会温室气体管理分技术委员会主要负责温室气体管理等领域的21 国家标准制修订工作,对口国际标准化组织环境管理技术委员 会 温 室 气 体 管 理 和 相 关 活 动 分 技 术 委 员 会(ISO/TC207/SC7)。2010 年 8 月,全国电工电子产品与系统的环境标准化技术委员会温室气体排放工作组(SAC/TC297 GHG WG)于北京召开成立大会。SAC/TC297 GHG WG 主要负责我国电工电子产品与系统领域温室气体排放相关标准化工作,对口国际电工委员会电子电气产品与系统的环境标准化技术委员会温室气体特别工作组(IEC/TC111/AHG5)开展相关国际标准制定、转化和推广工作。2014 年 4 月,国家标准委正式批复国家发改委成立全国碳排放管理标准化技术委员会(SAC/TC548),主要负责碳排放管理术语、统计、监测;区域碳排放清单编制方法;企业、项目层面的碳排放核算与报告;低碳产品、碳捕获与碳储存等低碳技术与装备;碳中和与碳汇等领域的国家标准制修订工作。对口国际标准化组织二氧化碳捕集、运输与地质封存技术委员会(ISO/TC265)和环境管理技术委员会温室气体管理及相关活动分技术委员会(ISO/TC207/SC7)。该标准化技术委员会由国家发改委负责日常管理及标准立项、报批等业务指导,由中国标准化研究院和中国质量认证中心联合承担秘书处,负责具体工作的运行管理。目前 TC548 发布的标准主要聚焦于重点行业企业温室气体排放核算和报告、22 基于项目的温室气体减排评估方面的标准。(2)标准现状 随着国外相继颁布产品碳足迹评价标准及相关的政策文件,我国对低碳发展和产品碳足迹评价标准的关注和认识日益增强。生态环境部于 2009 年 10 月宣布将给予符合低碳认证的产品加贴低碳标签,正式启动实施产品低碳计划;国家发展改革委、国家认证认可监督管理委员会于 2010 年月组织召开了“应对气候变化专项课题我国低碳认证制度建立研究”的启动会暨第一次工作会议,标志着中国启动新一轮全面开展低碳认证制度的相关科学研究;国家发展改革委、国家认证认可监督管理委员会于 2013 年共同制定低碳产品认证管理办法,规定了低碳产品的认证实施、认证 标志、监督管理等制度,进一步规范和完善了节能低碳产品认证制度,为建立中国碳足迹评价标准打下了良好的基础。2013 年2016 年期间,共发布两批低碳产品,具体为:通用硅酸盐水泥、平板玻璃、铝合金建筑型材、中小型三相异步电动机、建筑陶瓷砖(板)、轮胎、纺织面料 7 种产品。全生命周期评价法 LCA 是产品碳足迹评价的基本方法,可为碳足迹评价提供规范支撑。我国积极开展生命周期评价相关的标准转化和制定工作,发布了 GB/T 24040-2008环境管理生命周期评价原则与框架和 GB/T 24044-2008环境管理生命周期评价 要求与指南,并完成浮法玻璃、金属23 复合装饰板材、钢铁产品、电子电气、变压器、电机、机械、塑料等 14 项全生命周期评价规范性文件。表表 4.1 产品全生命周期相关标准产品全生命周期相关标准 序号序号 标准名称标准名称 归口单位归口单位 1 GB/T 24025-2009 环境标志和声明 III 型环境声明原则和程序 全国环境管理标准化技术委员会 2 GB/T 24044-2008 环境管理 生命周期评价 要求与指南 3 GB/T 24040-2008 环境管理 生命周期评价 原则与框架 4 GB/T 29157-2012 浮法玻璃生产生命周期评价技术规范(产品种类规则)5 GB/T 30052-2013 钢铁产品制造生命周期评价技术规范(产品种类规则)6 GB/T 29156-2012 金属复合装饰板材生产生命周期评价技术规范(产品种类规则)7 GB/T 37552-2019 电子电气产品的生命周期评价导则 全国电工电子产品与系统的环境标准化技术委员会 8 GB/Z 40824-2021 环境管理 生命周期评价在电子电气产品领域应用指南 9 GB/T 40093-2021 变压器产品生命周期评价方法 10 GB/T 40100-2021 电机产品生命周期评价方法 11 GB/T 32813-2016 绿色制造 机械产品生命周期评价 细则 全国绿色制造技术标准化技术委员会 12 GB/T 26119-2010 绿色制造 机械产品生命周期评价 总则 13 GB/T 26789-2011 产品生命周期管理服务规范 全国自动化系统与集成标准化技术委员会 14 GB/T 41638.1-2022 塑料 生物基塑料的碳足迹和环境足迹 第 1 部分:通则 全国生物基材料及降解制品标准化技术委员会 总体来看,我国现行的国家全生命周期标准主要集中在几类产品,我国产品碳足迹评价标准较少,产品碳足迹的评价工作尚未完全展开。4.2.2 地方标准 北京、上海、广东、深圳等地均陆续出台了 16 项产品碳足迹地方标准(含深圳 6 项处于征求意见稿的地方标准)。上海产品碳足迹核算通则主要规定产品生命周期内24 的碳排放核算和评估的具体方法和要求,适用于产品全生命周期碳排放的核算和评估,也可用于部分生命周期碳排放的核算与评估,标准不包含量化过程中的抵消,生物质碳涉及的排放亦不纳入核算。深圳产品碳足迹评价通则由深圳市市场监督管理局归口,规定了产品碳足迹评价应遵循的原则、排放与清除要求、产品碳足迹评价方法以及产品碳足迹通报等内容。北京和广东分别对电子信息产品和家用电器、电子电气、巴氏杀菌乳发布了碳足迹评价地方标准,深圳的服装、家用纺织品、微型计算机、手机、印刷品和乳制品等 6 项产品碳足迹评价技术规范处于征求意见稿中,尚未正式发布。25 表表 4.2 产品碳足迹地方标准产品碳足迹地方标准 序号序号 标准编号标准编号 标准名称标准名称 所属地区所属地区 1 DB11/T 1564-2018 种植农产品温室气体排放核算指南 北京 2 DB11/T 1565-2018 畜牧产品温室气体排放核算指南 北京 3 DB11/T 1616-2019 农产品温室气体排放核算通则 北京 4 DB11/T 1860-2021 电子信息产品碳足迹核算指南 北京 5 DB31/T 1071-2017 产品碳足迹核算通则 上海 6 DB44/T 19412016 产品碳排放评价技术通则 广东 7 DB44/T 1503-2014 家用电器碳足迹评价导则 广东 8 DB44/T 1449.1-2014 电子电气产品碳足迹评价技术规范第 1 部分:移动用户终端 广东 9 DB44/T 1874-2016 产品碳足迹产品种类规则 巴氏杀菌乳 广东 10 SZDB/Z 166-2016 产品碳足迹评价通则 深圳 11 征求意见稿 产品碳足迹评价技术规范 服装 深圳 12 征求意见稿 产品碳足迹评价技术规范 家用纺织品 深圳 13 征求意见稿 产品碳足迹评价技术规范 微型计算机 深圳 14 征求意见稿 产品碳足迹评价技术规范 手机 深圳 15 征求意见稿 产品碳足迹评价技术规范 印刷品 深圳 16 征求意见稿 产品碳足迹评价技术规范 乳制品 深圳 4.2.3 行业标准 电子和通信行业已发布 6 项碳足迹评价行业标准,涵盖的产品类别有:液晶显示器、液晶电视机、便携式计算机、台式微型计算机、移动通信手持机和以太网交换机。表表 4.3 产品碳足迹行业标准产品碳足迹行业标准 序号序号 标准编号标准编号 标准名称标准名称 所属行业所属行业 1 SJ/T 11718-2018 产品碳足迹 产品种类规则 液晶电视机 SJ 电子 2 SJ/T 11717-2018 产品碳足迹 产品种类规则 液晶显示器 SJ 电子 3 SJT 11735-2019 产品碳足迹 产品种类规则 便携式计算机 SJ 电子 4 SJT 11736-2019 产品碳足迹 产品种类规则 台式微型计算机 SJ 电子 5 YD/T 3048.1.1-2016 通信产品碳足迹评估技术要求第 1 部分:移动通信手持机 YD 通信 6 YD/T 3048.2.2-2016 通信产品碳足迹评估技术要求第 2 部分:以太网交换机 YD 通信 26 4.2.4 团体标准 2018 年 1 月 1 日开始实施新修订的 中华人民共和国标准化法进一步明确了团体标准的法律地位,团体标准成为我国标准体制中的一个层级,与企业标准共同构成我国标准体系中市场标准成份。随着标准化法的实施,团体标准迎来快速发展时期。截止 2022 年,与碳足迹相关的团体标准有21 项。(1)佛山市高新技术应用研究会与 2022 年发布了与电池产品相关的 6 项产品碳足迹核算与报告要求标准。(2)中国电子节能技术协会发布了与电器电子、电池产品相关的 5 项产品碳足迹团体标准。(3)广东省节能减排标准化促进协会(GDES)作为活跃的团体组织,为适应国家的绿色低碳发展新形势和支持广东低碳节能发展工作,制定并发布了产品碳足迹评价技术通则(T/GDES20001-2006)、产品碳足迹声明标识(T/GDES2-2006)、碳足迹标识(T/GDES26-2019)等项团体标准。(4)中国印刷技术协会 2016 年发布印刷产品碳足迹评价方法团体标准。27 表表 4.4 产品碳足迹团体标准产品碳足迹团体标准 序号序号 标准编号标准编号 标准名称标准名称 归口单位归口单位 1 T/FSYY 0034-2021 产品碳足迹核算与报告要求 碳酸锂 佛山市高新技术应用研究会 2 T/FSYY 0033-2021 产品碳足迹核算与报告要求 氢氧化锂 3 T/FSYY 0032-2021 产品碳足迹核算与报告要求 硫酸镍 4 T/FSYY 0031-2021 产品碳足迹核算与报告要求 硫酸钴 5 T/FSYY 0028-2021 产品碳足迹核算与报告要求 锂离子电池正极材料前驱体 6 T/FSYY 0027-2021 产品碳足迹核算与报告要求 锂离子电池正极材料 7 T/DZJN 77-2022 锂离子电池产品碳足迹评价导则 中国电子节能技术协会 8 T/DZJN 003-2019 电器电子产品碳足迹评价移动通信手持机 9 T/DZJN 002-2019 电器电子产品碳足迹评价微型计算机 10 T/DZJN 001-2019 电器电子产品碳足迹评价电视机 11 T/DZJN 002-2018 电器电子产品碳足迹评价 LED 道路照明产品 12 T/DZJN 001-2018 电器电子产品碳足迹评价通则 13 T/GDES 50-2021 凉茶植物饮料产品碳足迹等级和技术要求 广东省节能减排标准化促进会 14 T/GDES 26-2019 碳足迹标识 15 T/GDES 20005-2019 产品碳足迹 产品种类规则 合成洗衣粉 16 T/GDES 20004-2018 家用洗涤剂 产品碳足迹等级和技术要求 17 T/GDES 20001-2016 产品碳足迹 评价技术通则 18 T/GDES 2-2016 产品碳足迹声明标识 19 T/GDES 20003-2016 产品碳足迹 小功率电动机基础数据采集技术规范 20 T/GDES 20002-2016 产品碳足迹 产品种类规则 巴氏杀菌乳 21 T/PTAC 002-2016 印刷产品碳足迹评价方法 中国印刷技术协会 综上,梳理了我国各层级有关碳足迹方面的标准,共有57 项(含深圳 6 项处于征求意见稿的技术规范)。从生效时间角度看,标准生效的年份集中在 20082022 年;从层级角度看,目前团体层级相对较多,上级标准较少;从标准类别角度看,包括通则类、标识标签类、产品碳足迹评价类、核算与报告类;从行业角度看,主要集中在电子电器、农食产品、纺织产品、建材产品、轻工产品。28 4.3 应用现状 当前我国尚未建立碳足迹标识/标签制度,典型企业、第三方机构、行业协会有在个别项目和产品上开展碳足迹试点,如:中国质量认证中心 CQC2016 年向荣邦机械有限公司和登王化学工业有限公司颁发了产品碳足迹证书;中环联合认证中心(CEC)2016 年对全国首款碳减排公益产品“碳减排公益茶”进行认证。电子电器行业,2021 年 7 月中国电子节能技术协会向TCL 颁发了国内首张电器产品的碳标签评价证书;2021 年 8月,江苏博亚照明电器有限公司与江苏开元太阳能照明有限公司拿到了产品碳标签评价证书。日用消费品方面,2021 年 8 月广州市蓝月亮实业有限公司获得了中国建材检验认证集团股份有限公司颁发的碳标签评价证书,旗下卫诺香氛洁厕液、宝宝专用洗衣液等 6 款不同规格产品拥有了碳标签(广州市碳标签体系研究及试点示范项目由广州市生态环境局牵头开展,国检集团作为评价机构,在广州市范围内选定了 7 家企业开展产品碳标签试点评价)。纺织服装行业,2021 年太平鸟发布新疆棉 T 恤碳足迹;2022 年女装玛丝菲尔、歌力思发布产品碳足迹评价报告。总的来说,在国内应用国内碳足迹标准开展碳足迹评价29 尚未完全展开,碳足迹评价工作仍处于探索状态。4.4 小结 本章节梳理了我国现存各级碳足迹相关标准类别、涵盖面等现状,指出标准之间存在重复、交叉内容,缺乏统一规划;在应用方面,国内产品碳足迹评价工作处于试点,尚未完全展开。30 第五章 结论与建议 第五章 结论与建议 5.1 结论 在当今全球资源环境问题日益突出的背景下,碳足迹作为一种环境管理工具,在应对全球气候变暖等环境问题方面具有积极意义。生命周期评价方法已逐渐成为世界范围内评估产品碳足迹的主导方法。总的来看,国外碳足迹标准起步较早,标准的应用和碳足迹评价品类比较丰富。目前我国产品碳足迹评价使用的标准主要援引 PAS 2050 和 ISO 14067,并没有属于我国自己的标准。国内由于LCA 起步晚,国家、行业、地方和团体均有发布碳足迹相关标准,但总体上产品碳足迹标准数量少、不完善、应用少、碳足迹评价工作不成熟等不足,极少数企业开展过碳足迹评价工作外,多数企业尚未真正开展生命周期评价相关工作。随着评价产品种类的增多与细化,碳足迹评价细化标准需要补充和完善,确立适合本土发展需要的碳足迹产品种类规则,是评价产品碳足迹的第一步。5.2 建议 我国作为世界上最大的发展中国家,在全球气候变化与碳贸易壁垒兴起的背景下,推行碳标签制度势在必行,但是在制定完善的碳足迹标准与建立碳标签制度方面仍有很长31 的路要走。粤港澳大湾区国际化水平领先,经济实力雄厚,绿色低碳工作一直走在全国前列,当前面临国际形势复杂、国内产业高质量转型发展,大湾区具备推动“双碳”工作先行示范条件,建议尽快构建粤港澳大湾区碳足迹标准体系。从系统化、全局化角度,聚焦粤港澳大湾区产业高质量低碳发展,关注政府、企业、消费者等相关方对碳足迹标准的需求,借鉴国际社会产品碳足迹评价标准的应用以及中国部分产品碳足迹评价标准的相关经验,进一步完善各行业产品生命周期评价方法,为持续性的碳足迹标准建设提供依据,助力粤港澳大湾区建立碳标签制度,并与国外碳标签体系互认,拥有行业话语权,积极应对绿色贸易壁垒。32 附件 1 典型国家和地区碳足迹应用情况 附件 1 典型国家和地区碳足迹应用情况 国家国家 英国 美国 欧盟 瑞典 法国 瑞士 德国 加拿大英国 美国 欧盟 瑞典 法国 瑞士 德国 加拿大 澳大利亚 日本 韩国 泰国 澳大利亚 日本 韩国 泰国 碳标碳标签名签名称 称 Carbon Label/Carbon Reduction Label Carbon Label for California Carbon Free Label Climate Conscious Carbon Label CO2 Star Climate Marking in Sweden Group Casino Indice Carbon approved by climatop Carbon Footprint Label Carbon Counted Carbon Reduction Label Carbon Footprint Label CooL(CO2 Low)Label Carbon Footprint label 年份年份 2007 2009 2007 2009 2006-2008 2008 2008 2008 2008 2007 2009 2008 2008 2009 碳标碳标签图签图标 标 标签标签类型类型 碳足迹标识、碳消减标识 自愿性 自愿性 无碳标签,自愿性 金、银、铜三个等级;自愿性 碳标签、自愿性 瑞典第三类环境声明;自愿性 卡西诺碳指标/自愿性 碳标签/自愿性 碳足迹标签/自愿性 碳标签/自愿性 碳减量标签/自愿性 碳足迹标签/自愿性 碳足迹标签/自愿性 减量标签/自愿性 33 核查核查依据依据标准标准 PAS 2050、GHG Protocol、足迹专家指南(Footprint Expert Guide)EIO-LCA(环境输入与输出生命周期评估方法)PAS 2050、ISO 14044、GHG Protocol、LCA LCA LCA,RED LCA 基于BPX30-323 标准多环境指标体系评价的一般准则与方法、PAS2050 GHG Protocol、ISO 14040、LCA 法 以ISO14040/44 为基础,同时参考PAS2050 GHG Protocol、ISO 14064、ISO 14025、PAS 2050 PAS 2050;Code of Good Practice TS Q 0010日本温室气体排放评价指南 ISO14040、ISO14064、ISO14025;PAS2050;韩国第三类环境声明标准;其它规范如 GHG 议定书等 PAS2050;ISO14040、ISO14064、ISO14025;UNFCCC/CDM 方法 执行执行部门部门或机或机构 构 Carbon Trust Carbon Label California Carbonfund Climate Conservancy 欧盟成员国相关组织机构联合支持 (国际或欧盟的政府部门、非政府或行业协会)瑞典农民协会、食物标签组织 Group Casino Climatop Oko-Institut(应用生态研究所),PIK(波茨坦气候影响研究所),Themal(智囊团组织)Carbon Counted Planet Ark and the Carbon Trust 经济产业省(METI)、农林省、国土交通省负责分头实施 韩国环境产业技术研究院作为第三方机构,韩国唯一负责CFP 的实施并制定具体技术程序和要求。泰国温室气体管理组织(TGO)与国家金属和材料技术中心(MTEC)以及国家科学与技术发展局(NSTDA)执行执行部门部门机构机构性质性质 非盈利,前期政府出资 非盈利,非政府组织 非盈利,非政府组织 非盈利,非政府组织 政府组织 非盈利 盈利性企业 非盈利,非政府组织 非盈利,非政府组织 非盈利,非政府组织 非盈利,企业赞助资金 政府组织 非盈利,半官方组织(准政府组织,附属于环境部)非盈利 34 评估评估查验查验单位单位 Carbon Trust/CTI International Certification Co.(中国)/Korea Productivity Center(韩国)/Vireo SRL(意大利)Carbon Label California 第三方机构 Climate Conservancy(原属于斯坦福大学)第三方机构 KRAV or Svenskt Sigill Group Casino 独立机构查验 Oko-Institut(应用生态研究所),PIK(波茨坦气候影响研究所),Themal(智囊团组织)第三方机构 Planet Ark(星球方舟);Carbon Trust(碳信托公司)第三方机构 Korea Eco-Products Institute 国家金属与材料技术中心(METC)产品产品类别类别 涉及 2500多种产品,主要涵盖食品、日用品、服装等 食品 服装、糖果、灌装饮料、电烤箱、组合地板等 无特定产品 生物燃油、润滑油、运输类产品和服务 食品、纺织品、家具、木与纸制品、塑橡胶/玻璃及化学品、机械设备业等 Casino所有自售产品 B2C、B2B 所有产品或服务:行李箱包、美容产品、电子产品、食品饮料、园艺工具、宠物用品、日用品等 电话、床单、建筑材料、日用品、包装纸箱、运动背带、食品等 啤酒 橄榄油、酒业、干手机等 食品饮料、电器、家具、包装容器、清洗剂与消费品等 家用电器、饮料、食品、航空、家具等 饮料、食品、轮胎、冷气机、变压器、纸箱、塑料树脂、低碳、瓷砖等 35 标章标章揭露揭露 宣告碳排放量和碳排放减量 CO2e 宣告碳中和 分级,宣告达到标准 CO2e 宣告达到标准 CO2e 分级,不色块体现产品对环境的不同影响程度,从左至右影响程度增强 宣告减量,表示该产品在碳足迹控制方面宣告领先,即减量 衡量/评价 CO2e CO2e,承诺未来减量 CO2e CO2e,承诺未来减量 达到基线减量分级(以减排 10%、20%、30%、40%、50%进行分级,不同的颜色分别标识,圆形下方箭头标识减排量 粤港澳大湾区碳足迹标准体系及实施建议 研究报告 深圳市计量质量检测研究院 2022 年 10 月 目录目录 第一章 绪论.1 1.1 目的意义.1 1.2 研究内容.3 第二章 碳足迹标准现状.5 2.1 标准现状.5 2.2 现有标准不足.7 第三章 碳足迹标准需求分析.9 3.1 需求调研.9 3.2 需求分析.15 3.3 粤港澳大湾区产业分析.20 第四章 碳足迹标准体系框架构建.24 4.1 构建目标.24 4.2 构建原则.24 4.3 体系设计.25 4.4 实施路径.33 4.5 保障措施.36 第五章 结论.38 1 第一章 绪论 1.1 目的意义 气候变化是当今国际社会普遍关注的全球性问题。随着全球应对气候变化工作重视程度的不断提升,产品碳足迹在节能减排、产品制造、金融投资、国际贸易等方面的影响越来越大。通过开展产品碳足迹评价,可有效指导并帮助企业了解生产生活对气候变化的影响,由此采取可行的措施挖掘碳减排潜力,改善工艺,减少供应链中的碳排放,并可以通过碳标签表现形式,直观清晰地展现产品碳足迹信息,从而影响消费者行为和企业生产决策。目前,英国、德国、法国和日本等 10 余个国家和地区在持续推行碳标签制度,主要采用 PAS 2050、ISO 14067、GHG Protocol 和 TSQ0010 等产品碳足迹评价标准。近年来,我国对产品碳足迹评价不断重视,行业、第三方机构也开展过相关工作,但总体来讲,产品碳足迹评价工作还处于摸索阶段,尚未得到广泛普及。在标准化方面,作为推行碳标签制度的重要技术基础,当前我国碳足迹标准比较匮乏、标准体系还不够健全。随着国家对低碳发展政策的颁布,碳足迹标准必将得到越来越重视和不断完善。2021 年10 月中共中央、国务院印发国家标准化发展纲要,提出2 完善绿色发展标准化保障,建立健全碳达峰、碳中和标准,加快完善地区、行业、企业、产品等碳排放核查核算标准;加快完善地区、行业、企业、产品等碳排放核查核算标准;同年 12 月,国标委等十部委联合印发“十四五”推动高质量发展的国家标准体系建设规划,在生态文明领域中明确提出建设碳达峰、碳中和标准,推动碳排放管理体系、碳足迹、碳足迹、碳汇、碳中和、碳排放权交易等重点标准制定;国家发改委2022 年在促进绿色消费实施方案提出“优化完善标准认证体系。制定重点行业和产品温室气体排放标准,探索建立制定重点行业和产品温室气体排放标准,探索建立重点产品全生命周期碳足迹标准重点产品全生命周期碳足迹标准”。国家发改委 2022 年 4 月联合印发的关于加快建立统一规范的碳排放统计核算体系实施方案在重点任务中明确要求,建立健全重点产品碳排建立健全重点产品碳排放核算方法放核算方法。标准是经济活动和社会发展的技术支撑,是国家治理体系和治理能力的基础性制度。目前我国经济已由高速增长转向高质量发展阶段。推动高质量发展,高标准引领是关键。习总书记强调“中国高度重视标准化工作,积极推广应用国际标准,以高标准助力高技术创新,促进高水平开放,引领高质量发展”。碳足迹标准,是以实现控制碳排放为目的,依据低碳发展制度体系中各项措施的需求与经验,对控制碳排放过程中的各个环节所制定和发布的一系列相关标准与规范文件。构建碳足迹标准体系,是实现碳排放管理标准化的重要环节,也是实施碳标签制度的重要技术基础,将为推动落3 实碳排放目标、完善低碳发展制度体系、促进低碳经济转型和技术进步、开展国际谈判与贸易提供有力支撑。1.2 研究内容 碳足迹标准体系是一项科学性、全面性的系统工作,涉及目标需求、标准性质、应用主体、技术方法等各项研究,有必要针对碳足迹标准体系建设进行顶层设计,为后续标准制订与实施,探索建立完善的产品碳标签制度提供技术依据,推动落实碳排放目标奠定坚实基础。(一)国内外碳足迹标准现状研究 调研分析国内外现有碳足迹标识制度和标准体系,分析现有标准体系存在的主要问题,总结优良实践经验和做法,为粤港澳大湾区碳足迹标准体系建设提供参考借鉴。(二)粤港澳大湾区碳足迹标准需求调研 面向政府、企业、消费者、相关行业机构和协会等开展调研,结合粤港澳大湾区产业现状特点和高质量转型发展需求,深入了解相关方对碳足迹标准的不同需求,为建立标准体系研究提供参考。(三)粤港澳大湾区碳足迹标准体系的构建研究 目前我国在碳足迹标准领域的探索仍处于点状,如何由点及面,需要研究分析现有碳足迹标准建设中的不足,在已有工作的基础上,结合产业发展特点和各方需求,构建碳足4 迹标准体系框架,研究明确碳足迹标准范围,建立碳足迹标准体系。(四)粤港澳大湾区碳足迹标准建设实施建议 根据标准目的,按照分步实施开展的原则,结合新时期面临的形势,针对性提出粤港澳大湾区碳足迹标准体系建设实施建议,为持续性的碳足迹标准制订与实施、开展标准化活动提供依据,为后续碳标签制度的实施提供技术基础保障。5 第二章 碳足迹标准现状 2.1 标准现状 2.1.1 国际标准 国际上使用较多的产品碳足迹评价标准主要包括有:(1)英国标准协会 BSI 发布的产品碳足迹评价标准 PAS 2050;(2)国际标准化组织推出的 ISO 14067;(3)世界资源研究所(The World Resources Institute,WRI)与世界可持续发展工商理事会(World Business Council for Sustainable,WBCSD)共同发布的温室气体核算体系(Greenhouse Gas Protocol,GHG Protocol);(4)日本的 TS Q0010-2009。2.1.2 国内标准 当前我国在碳排放管理标准方面已开展了系列工作,如成立全国环境管理标准化技术委员会温室气体管理分技术委员会(SAC/TC207/SC7)、全国电工电子产品与系统的环境标准化技术委员会温室气体排放工作组(SAC/TC297 GHG WG)、全国碳排放管理标准化技术委员会(SAC/TC548),分别对口国际对应领域的标准化组织,统筹规划对应领域国家标准制修订的工作。标准方面,我国 2008 年2022 年之间发布的碳足迹相关6 标准共有 57 项(含深圳 6 项处于征求意见稿的技术规范)。从层级角度看,团体标准层级相对较多,上级标准相对较少。表 2.1 国内碳足迹相关标准 序号 标准层级 数量(项)备注 1 国家标准 14 为全生命周期评价规范性文件 2 地方标准 16 含深圳 6 项征求意见稿技术标准 3 行业标准 6 4 团体标准 21 小计 57 从标准类别看,国内碳足迹标准主要包括有:通则类、标识标签类、产品碳足迹评价类、核算与报告类。其中,通则类标准,主要有 4 项产品碳足迹评价通则标准,为上海、广东和深圳在 2016 年2017 年之间发布的地方标准,以及广东省节能减排标准化促进会 2016 年发布的团体标准;标识标签类标准有 2 项,为广东省节能减排标准化促进会发布的碳足迹标识、碳足迹声明标识方面的标准;标准涉及产品主要有:电子电器产品、农食品、轻工化工产品、电池及电池材料类产品、机械产品、钢铁产品、建筑材料产品。国内外碳足迹标准现状分析详见国内外碳足迹标准现状研究报告。7 2.2 现有标准不足 国际上已发布出台多项产品碳足迹评价标准,但不同产品碳足迹评价标准的原则、方法以及量化程度等方面存在一定差异。国内碳足迹标准起步较晚,产品碳足迹评价标准和应用工作处于试点,尚未完全展开。现有碳足迹标准主要存在以下几个问题:(1)标准覆盖范围不能满足支撑粤港澳大湾区碳标签制度的实施。现有标准处于点状,关注个别领域,无法对碳标签制度实施涉及的碳排放计量监测、核算、评价与报告、标识标签、审定与核查等全过程提供完善的技术支撑。(2)缺乏急需领域国际互认的产品碳足迹标准。产品碳足迹作为发达国家征收“碳税”的依据,形成新的技术贸易壁垒。如电池行业,欧盟 2020 年电池法要求 2024 年 7 月起强制披露电池产品碳足迹信息;如电力行业、水泥、钢铁、铝等高能耗行业,欧盟碳边境调节机制(CBAM)将从 2023年开始实施。对国际上实施碳壁垒的产品,行业需要尽快做出调整,尽快启动碳足迹标准和相关方法研究,实施产品碳排放管理,推动建立国际碳足迹互认机制,以保持全球市场中的优势地位。(3)标准的应用和实施性有待加强。碳足迹标准重要的核心是与实际生产制造相符合,真正反应产品全生命周期碳排放特点,可为供应链减碳、实现节能和提高工艺水平提8 供指导依据,这些才是真正实现碳排放减少的关键。现有碳足迹标准的权威性不够,实施率不高,标准制定处于条块分割状态,一些标准由与行业关联不密切的部门或团队编制,高水平技术专家参与程度低,因标准权威性不高而影响了标准的实施范围和效果;标准之间存在重复、交叉内容,缺乏统一规划。随着湾区经济社会、科学技术和产业的不断发展,标准与湾区产业生产制造特点存在针对性不强、适用性不足的问题,综上,我国目前尚未建立起完善的产品碳足迹标准体系,碳足迹标准体系是碳标签制度的重要依据和前提,是产业碳减排的重要技术基础,亟需结合湾区产业特点和高质量低碳发展需求,构建合适、科学、完善的碳足迹标准体系。9 第三章 碳足迹标准需求分析 3.1 需求调研 为了更好地构建碳足迹标准体系,十分有必要对企业、行业协会、技术机构、政府部门等相关方对碳足迹政策和标准方面的需求作一个全面的调查研究,为开展碳足迹标准化方面的工作提供客观的参考依据。3.1.1 调研内容 本次调研主要包括如下几个方面:(1)对现有碳足迹政策和标准的了解情况;(2)已开展碳足迹方面的工作和存在困难;(3)对碳足迹标准的需求和建议。3.1.2 调研对象 调研对象包括:(1)生产企业:主要有电子、电池和纺织服装行业生产企业,包括:华为技术有限公司、欣旺达电子股份有限公司等电子电器行业企业,比亚迪股份有限公司、深圳市华宝新能源股份有限公司、深圳乾泰能源再生技术有限公司、深圳市格瑞普电池有限公司等电池行业企业,纺织服装行业深圳全棉时代科技有限公司等;(2)行业协会:深圳市电池行业协会、中国钢铁协会、深圳市质量检验协会等;10(3)技术机构:哈尔滨工业大学(深圳)、中国标准化研究院环资分院、深圳腾讯、上海易碳数字科技有限公司等技术机构;中国质量认证中心深圳分中心、深圳市标准技术研究院、莱茵技术监护(深圳)有限公司、北京赛西认证有限责任公司深圳分公司、香港天祥公證行有限公司、香港中华厂商联合会等第三方认证机构;(4)零售企业:天虹、沃尔玛等商超企业和电商阿里巴巴;(5)政府相关部门:深圳市市场监督管理局、香港品质保证局。3.1.3 调研方式 本次调查主要通过分别组织专题会议形式进行座谈交流,采用现场会议和线上网络会议两种方式。3.1.4 调研结果(1)对碳足迹政策和标准的了解情况 调研的国内技术机构、政府部门十分关注和了解国内碳足迹标准和政策动向;行业协会及大型生产制造企业,因贸易需求,对国内碳足迹标准有一定了解,认为:与国际碳足迹标准相比,国内碳足迹标准起步较晚;不同行业、协会、机构均有不同程度推出碳足迹评价标准,技术标准不统一;缺乏碳足迹评价工作的有效激励政策;电商企业和外资零售企业,则表示有持续关注了解碳足迹政策和标准,关注加贴11 碳标签的产品在市场上对消费者的消费影响;部分中小型生产企业、实体零售企业如天虹,表示缺乏对碳足迹政策和标准的了解。(2)已开展的碳足迹工作情况 电子和电池行业大型知名企业均表示,十分关注企业绿色低碳发展,已在组织、项目和产品层面持续开展不同程度的节能减碳工作。其中,在产品层面,研发设计阶段,关注产品绿色属性,通过技术创新减少产品自身碳足迹;在供应链方面,联合上下游合作伙伴实现节能减排,全方位构建绿色供应链,在供应商认证、选择、审核、绩效管理及物料选型等环节明确提出绿色低碳要求;在产品生命周期管理方面,十分关注出口国对产品碳足迹、生命周期环境管理的要求,出口产品应出口国要求开展产品生命周期环境评估;企业内部开展 LCA 能力建设,包括对物质信息、材料信息、碳足迹、水足迹等产品生命周期影响评估。中小型企业表示尚未建立产品碳足迹评价工作的配套能力,如核算技术、专业人员和团队等。第三方认证机构,均在不同程度接触、了解并参与碳足迹工作,包括标准的编制、评价工作,具备一定技术能力,掌握碳足迹评价工作方法和流程。政府机构表示,当前碳足迹评价工作有待进一步加强合规性;核算标准、核算过程不统一,存在评价、认证等多种12 方式;实施机构有行业协会、第三方机构、咨询服务单位等。(3)开展碳足迹评价工作存在的困难 在实施碳足迹评价工作时主要面临的困难有如下几点:一是对国内碳足迹政策和标准不是十分了解。碳足迹核算过程存在技术难点,主要产品生命周期碳排放量核算中的核算边界、核算方法、排放因子等方面的规范性和一致性。二是缺乏统一权威的碳足迹基础数据库。在碳足迹核算过程中,由于不同国家和地区资源分布不平衡、科技水平不同、以及能源消耗的不对称,产品生命周期原料、生产、工艺等不同导致碳足迹核算存在很大差异。国际知名数据库并不适合我国国情。国际上常用的碳足迹数据库,如瑞士的商业数据库 Ecoinvent,以文献数据、学术研究为基础,后结合工业生产补充数据,现有以欧洲为主、涉及多国的 3 万多条数据;德国数据库 Gabi,以工业数据为基础,组建以材料学科为主的研究团队,并与知名制造商合作,数据不断更新、迭代,积累了近 2 万条数据,是业界公认的门类较为齐全、数据相对可信的数据集,该企业目前已被美国某石化公司收购。由于国际数据库基本都是基于特定地区和国家的平均数据,国外主流数据库适用于中国的数据非常有限,如 Gabi,仅 3%的数据集适用于中国,而且时效性不强(有些数据库采用的是 10 年前的数据)、技术代表性不够等问题,不能真实反应中国产品碳足迹的真实水平,严重制约中国在国际上13 应对气候变化、贸易往来等活动的话语权。另一方面,国内一些研究机构和行业协会正在同步推进不同行业的数据库建设,碳足迹数据集并不健全,目前典型数据库有:四川大学建立的中国生命周期参考数据库 CLCD,涵盖能源、原材料、运输的清单数据集只有 640 条;生态环境部环境规划院联系研究机构建立的中国产品全生命周期温室气体排放系数集,数据来源几乎全部来自于文献和年鉴。国内数据不准,质量不高,难以反应产品生产技术水平和碳足迹披露的实际情况。不同数据库、数据集的方法并不统一、或并未经统一、权威的方法学验证。由于数据口径、核算模型、方法学不统一,即使通过不同数据库信息能进行产品碳足迹核算,得到也是一个拼凑的结果,难以反应产品生产技术水平和碳足迹实际特点,影响碳足迹核算结果。三是缺乏碳足迹专业人才。碳足迹核算属于专业技术工作,是一个新兴行业,其理论知识体系尚未构建,需要了解温室气体核查、生命周期理论和产品生产制造全过程,相应地其专业人才必须是通晓多个专业的复合型人才,培养难度大。四是缺乏统一规则,缺乏监管依据,碳足迹评价市场存在一定乱象,给市场监管带来一定困难。(4)对碳足迹标准的需求和建议 企业、行业协会、政府部门和技术机构均表示,在当前14 双碳背景下,国内出现了各种碳足迹评价工作,推广主体有行业协会、第三方机构,对碳足迹评价工作实施主体企业来说,缺乏统一标准和规则,难以辨别碳足迹评价工作的有效性、权威性,甚至感到有点混乱,也给政府部门监管带来一定困难;建议由政府部门牵头建立统一的碳足迹标准体系,保证标准的先进性及相关工作的公正性、合规性。在标准建设内容方面,认为支撑碳足迹评价实施过程的技术和管理类标准急需建立和完善。如大型知名企业和行业协会表示,十分有必要加快国内碳足迹评价方法论的研究,根据国内生产工艺、制造过程等实际产品生命周期特点,建立本土化的碳足迹评价标准;建议与欧盟进行有效的交流实现互认;建议由主管部门牵头,围绕能源、材料、半成品、成品等基础建立统一标准数据库;建立科学有效的激励政策,鼓励更多企业应用碳足迹评价标准,参与碳标签制度工作。此外,第三方认证机构还建议,标准需要关注碳足迹审定与核算,建议对实施碳足迹审计与核算工作的机构和人员进行规范,统一工作流程和报告内容。政府部门表示,碳足迹标准需要考虑政府的监管工作,对碳足迹评价工作及碳标识的使用等合规性进行监督管理。15 图 1 部分调研交流照片 3.2 需求分析 3.2.1 政策需求 积极应对全球气候变化,控制以 CO2为代表的温室气体排放已成为国际社会的共识。中国高度重视气候变化问题,2020年9月习近平总书记在第七十五届联合国大会一般性辩论上向国际社会作出“碳达峰、碳中和”郑重承诺。为此,中国将 2030 年前碳达峰纳入“十四五”规划和 2035 年远景目标。在相关政策方面,国务院印发的2030 年前碳达峰行动16 方案(国发202123 号)在重点任务中提出:完善绿色完善绿色低碳技术和产品检测、评估、认证体系。低碳技术和产品检测、评估、认证体系。2021 年商务部在“十四五”对外贸易高质量发展规划提出:探索建立外贸产品探索建立外贸产品全生命周期碳足迹追踪体系。全生命周期碳足迹追踪体系。中共中央、国务院印发的粤港澳大湾区发展规划纲要提出,推动粤港澳碳标签互认机推动粤港澳碳标签互认机制研究与应用示范制研究与应用示范;深圳市政府印发的深圳市生态环境保护“十四五”规划要求:探索建立产品碳标签制度,研究制探索建立产品碳标签制度,研究制定产品碳足迹评价标准体系,推进产品碳足迹评价试点和产定产品碳足迹评价标准体系,推进产品碳足迹评价试点和产品碳排放基础数据库建设品碳排放基础数据库建设;在深圳碳普惠体系建设工作方案也明确要求:打造绿色消费场景,鼓励公众购买碳标签碳标签产品产品。国家把标准视为支持政策落实、支持产业转型、支持技术推广的有效手段。2021 年 10 月中共中央、国务院印发 国家标准化发展纲要,提出完善绿色发展标准化保障,建立健全碳达峰、碳中和标准,加快完善地区、行业、企业、产产品等碳排放核查核算标准品等碳排放核查核算标准。同年 12 月,国标委等十部委联合印发“十四五”推动高质量发展的国家标准体系建设规划,在生态文明领域中明确提出建设碳达峰、碳中和标准,推动碳排放管理体系、碳足迹碳足迹、碳汇、碳中和、碳排放权交易等重点标准制定重点标准制定。国家发改委 2022 年在促进绿色消费实施方案提出“优化完善标准认证体系。制定重点行业和产品制定重点行业和产品温室气体排放标准,探索建立重点产品全生命周期碳足迹标温室气体排放标准,探索建立重点产品全生命周期碳足迹标准准”。国家发展改革委、国家统计局、生态环境部于 2022 年17 4 月印发的关于加快建立统一规范的碳排放统计核算体系实施方案在重点任务中明确要求,建立健全重点产品碳排建立健全重点产品碳排放核算方法,研究制定重点行业产品的原材料、半成品和成放核算方法,研究制定重点行业产品的原材料、半成品和成品的碳排放核算方法品的碳排放核算方法推动适用性好、成熟度高的核算方法逐步形成国家标准,指导企业和第三方机构开展产品碳排放核算。综上,随着国家政策的引导,碳足迹标准得到越来越重视。制定碳足迹标准,可为政府在各领域推动低碳经济发展,出台财政激励政策等提供决策工具,对政府应对气候变化,倡导低碳经济转型发展具有非常重要的意义。3.2.2 行业需求 标准是产业发展的规范与秩序,也是产业迈向价值链中高端的基石,没有先进标准就没有现代产业竞争优势。粤港澳大湾区地处中国沿海开放前沿,经济实力雄厚,创新要素集聚,国际化水平领先,是中国开放程度最高、经济活力最强的区域之一,在国家发展大局中具有重要战略地位。持续推动粤港澳大湾区的绿色低碳发展,可以为“双碳”工作起到引领示范作用。粤港澳大湾区产业结构处于向后工业化过渡的阶段,已经具备了产业低碳发展的优势,与此同时,大湾区的低碳发展仍面临产业结构调整升级的诸多挑战。产品碳足迹有利于加快推进产业绿色低碳升级,优化产业结构,是实现节能减排的基础性工作。18 构建碳足迹标准体系,提出适合大湾区产业发展的碳足迹评价方法学和标准,可以清晰了解产业全生命周期内温室气体排放的比重,有助于推动湾区制造业绿色低碳技术创新和转型升级,促进技术创新成果转化,激发企业绿色低碳发展内生动力,同时可服务于国内国际双循环,助力中国产品融入国际绿色产业链供应链体系,增强粤港澳大湾区的国际竞争优势,进一步提升湾区乃至全国碳足迹工作的国际化水平。3.2.3 消费需求 绿色低碳正逐渐融入经济社会发展各方面,消费是经济发展的强大引擎,绿色生活方式的转变需要扩大绿色低碳产品供给和消费。随着社会发展,人们对生活质量要求和环保意识的提高,通过碳标签表现形式展示产品碳排放信息,可以更好的满足消费者绿色消费需求,满足人民日益增长的美好生活需要,加快形成绿色低碳生活方式;拓宽公众参与渠道,通过消费选择,促进广大公众和社会各界参与减缓气候变化的行动,把关注气候变化观念融入公众日常生活;以公众消费选择引导和鼓励企业绿色技术,从需求端带动供应端的低碳发展,促进形成绿色低碳的生产模式和消费模式。3.2.4 贸易需求 全球低碳经济是可持续发展的必然趋势。当前发达国家正在设立各种碳壁垒,通过新门槛和技术壁垒阻碍发展中国19 家的外贸和经济发展。如,欧盟电池法规定自 2024 年 7 月 1日起进入欧洲市场的工业和电动汽车电池的制造商和供应商必须提供碳足迹声明;欧盟将在 2023 年实施碳边境调节机制(CBAM),覆盖电力、水泥、钢铁等高能耗行业。我国正处于工业化中期加速发展、工业化与城镇化同时并举的阶段,也是能源资源消耗快速增长的阶段。我国主要贸易对象中的英国、法国、美国和日本等国家,都纷纷制定和实施了相应的碳标签制度,涉及的商品种类也在不断增加,其中涉及我国出口商品比重较大的有纺织服装、农产品和日用品等产品。以电池为例,深圳市统计局数据显示,2022 年上半年全市出口 9142.5 亿元,其中仅锂离子蓄电池出口额达129.6 亿元,较去年同期增长 56.7%,主要出口欧盟、美国和东盟等地。因此,出口贸易受碳标签的影响较为明显。同时,碳标签会增强国际贸易的不平衡,发达国家征收碳关税将对发展中国家的大量工业品将造成巨大冲击,绝大部分商品将成为征收对象。根据联合国征收系统预估,中国在国际市场上有 3 成以上的商品将被征收碳关税,我国出口产品的竞争力可能因此而下降,进而导致我国出口商品的市场份额降低。据统计,从 2002 年开始,中国已连续 17 年成为世界上遭遇贸易摩擦最多的国家。在今年全国两会上,山东钢铁集团、宁德时代等多家企业代表建议,尽快启动产品碳足迹标准和方法研究,建立产品碳排放管理体系。20 虽然我国目前没有实施碳标签制度的强制性政策,但碳标签已成为国际上常用做法,并作为进出口贸易中的壁垒。因此亟需加快产品碳足迹标准建设,为碳标签制度的建立实施提供重要技术依据;推动碳足迹标准应用,推动产品层面碳排放核算,积极应对国际贸易形势,推动国际贸易规则认同,有利于促进国际贸易便利化,持续保持湾区外贸出口领先地位,不断提升湾区绿色制造的国际竞争力。3.3 粤港澳大湾区产业分析 3.3.1 产业现状 粤港澳大湾区地处我国沿海开放前沿,以泛珠三角区域为广阔发展腹地,经济发展水平全国领先,2019 年粤港澳大湾区 GDP 总量达 11.6 万亿元,较 2018 年增长 6.7%,粤港澳大湾区的经济总量已与纽约湾区旗鼓相当,其中深圳 GDP贡献排在首位。作为世界级的制造基地,粤港澳大湾区是我国成熟度最高的湾区,是我国开放程度最高、经济活力最强的区域之一,产业体系完备,集群优势明显,经济互补性强,香港、澳门服务业高度发达,珠三角九市已初步形成以战略性新兴产业为先导、先进制造业和现代服务业为主体的产业结构。湾区制造业占 GDP 比重达 21%,制造业门类齐全,包含电子信息、装备制造、汽车、新能源、新材料、生物医药、石化、21 钢铁、海洋工程、高端消费品等等,世界 500 强企业在粤港澳占 25 个。随着中国制造 2025 规划的落地和实施,粤港澳大湾区的制造业面临着新的机遇和挑战,制造业从传统的中低端制造业向高端制造业转变。湾区在发展过程中制造业是重要的产业形式,2015-2019 年粤港澳大湾区规模以上工业企业总产值占全国工业总产值的比重的年均值为 10.7%,其中制造业规模以上企业总产值占比 10.84%。从变化趋势看,湾区工业和制造业总产值市场占有率呈逐年递增趋势。分行业看,计算机通信和其他电子设备制造行业市场占有率最高,年均值高达 33.32%,2019 年高达 35.56%。家具行业市场占有率也比较高,年均市场占有率高达 20.76%,2019 年提升到 24.68%。电气机械和器材、文教工美体育和娱乐用品、橡胶和塑料制品业、金属制品机械和设备修理业等其它十大制造行业的市场占有率年均值都在 10%以上。目前低端制造业比重从 43%下降到 31%,粤港澳大湾区内的制造业也呈现着产业结构转型升级的发展局面。以深圳为例,2020 年深圳第三产业占地区生产总值比重为 62.1,战略性新兴产业比重 达 37.1,高技术制造业增加值占规模以上工业增加值的比重分别达到 66,深圳确定了七大战略性新兴产业及20 大产业集群、8 大未来产业规划,明确了“20 8技术主攻方向,其中七大战略性新型产业包括:新一代电子信息、22 数字与时尚、高端制造装备、绿色低碳、新材料、生物医药与健康、海洋产业。另一方面,粤港澳大湾区产业低碳化发展趋势明显。粤港澳大湾区已经初步建立了现代经济体系,高污染高排放的产能在逐渐淘汰,正在实行更严格的排放标准,高新技术产业占较高比重,以先进制造业和现代服务业为主体的产业结构初步形成,产业低碳化发展趋势明显,温室气体排放控制成效显著,经济社会与生态环境保护开始呈现协调发展态势,大湾区特别是几个核心城市的低碳生产率指标在全国处于领先水平。3.3.2 面临形势 如何在中国制造和双碳背景下,推动制造业的高质量绿色低碳转型发展成为粤港澳大湾区面临的重要形势。当前,世界经济不确定不稳定因素增多,保护主义倾向抬头,全球治理体系和国际秩序变革加速推进,新一轮科技革命和产业变革蓄势待发,“一带一路”建设深入推进。在新发展理念引领下,我国深入推进供给侧结构性改革,推动高质量发展,粤港澳大湾区面临诸多挑战。大湾区经济运行存在产能过剩、供给与需求结构不平衡不匹配等突出矛盾和问题,经济增长内生动力有待增强,区域发展空间面临瓶颈制约,资源能源约束趋紧,生态环境压力日益增大,人口红利逐步减退。另一方面,粤港澳大湾区绿色低碳协同发展有待加强。23 粤港澳大湾区粤、港、澳三地缺乏统一的政策标准体系,比如绿色建筑、低碳产品等方面都缺乏统一的标准,鼓励绿色低碳发展的政策也没有普适性,在推进城市间绿色低碳协同发展方面有待强化,尚未在全社会形成良好的绿色消费和低碳生活的良好氛围。3.3.3 发展需求 粤港澳大湾区是中国现代化建设的先行示范区,在生态环境保护、绿色低碳发展方面走在全国前列。创建国家“碳达峰碳中和”引领示范区具有良好的政策基础、发展基础、实践基础,有条件先行探索,创建国家碳达峰碳中和引领示范区,为全国实现“双碳”战略目标贡献可推广的湾区经验。粤港澳大湾区需要以低碳创新为引擎,实现绿色经济增长。通过改变传统的高能耗、高污染、高排放的粗放型经济增长模式,面向绿色低碳的技术创新驱动,降低污染排放强度,提高产品的质量和效益,实现新的供给与需求的均衡,扩大有效供给,培育绿色发展的市场内生机制,实现产业低碳技术创新和结构优化升级,实现绿色经济增长。24 第四章 碳足迹标准体系框架构建 4.1 构建目标 针对如何支撑碳标签制度提出建立集标准、计量、监测、核查为一体的碳足迹标准支撑体系,为相关标准的申请、立项、深化编制及应用等工作提供指导,为建立和实施大湾区碳标签制度提供技术支撑。4.2 构建原则 构建湾区碳足迹标准体系框架,按照 GB/T 130162018标准体系表编制原则和要求中的有关规定,注重标准体系的整体性和结构化,遵循需求引领、创新驱动、统筹协调和注重实效四个基本原则,力求构建的湾区碳足迹标准体系框架层次分明、布局合理、体现湾区产品碳足迹管理技术水平并具有预见性,服务国内国际双循环,助力中国产品融入国际绿色产业链供应链体系。4.2.1 需求引领原则 将产业、市场和监管等社会各方需求作为建立湾区碳足迹标准体系的出发点和着力点,按照需求引领的原则,针对湾区碳足迹标准体系建设目标,全面系统,科学确定发展重点,以充分满足湾区产业高质量低碳发展、国内绿色消费和国际贸易壁垒、以及实施碳标签制度的技术需求。25 4.2.2 创新驱动原则 将创新作为建立湾区碳足迹标准体系的驱动力,标准体系具有开放性,为湾区产业发展预留空间,形成管理方式创新、标准供给形式创新,提高湾区碳足迹标准制修订的工作效率和实用价值,以充分发挥标准对碳足迹评价和管理、对产业低碳发展的支撑作用。4.2.3 统筹协调原则 将协调发展理念贯穿于湾区碳足迹标准体系建设的各个方面,标准体系各层次要划分清晰,与相关政策衔接配套,着力强化各方之间的统筹协调,注重政府部门、行业组织、企业、第三方机构等在碳足迹标准制修订和应用实施中的协同。4.2.4 注重实效原则 将符合湾区产业发展实际、便于实施作为湾区碳足迹标准体系建设的工作目的。注重碳足迹标准实操性,在经过充分调研和论证的基础上,制定与实际情况相符、可操作性强的标准,便于各相关方的实施。提高标准实施能力,加强标准实施的信息反馈、效果评估和监督管理,着力提升碳足迹标准的适用性和应用水平。4.3 体系设计 4.3.1 实施主体 26 对产业来说,生产制造企业是产品生命周期和供应链碳减排的责任主体,需要对产品生命周期碳足迹和上下游供应链碳排放进行量化核算,并针对性地建立减排措施,最终实现产品生命周期和全价值链的碳中和。碳足迹标准的实施主体主要是生产制造企业。同时,还需要建立碳足迹核算、评价等相关标准,以便对核算结果进行认可,标准的实施主体还包括第三方审定与核查机构等。此外,碳足迹评价工作的合规性受相关部门监管。因此,需要针对性地建立以生产制造企业、第三方审定与核查机构、监管机构为标准化实施主体的产品碳足迹标准体系。明确了产品碳足迹标准化的实施主体,还需要进一步明确标准化对象,也就是需要明确标准化实施主体对什么对象进行碳排放管理工作。产品碳足迹标准化的对象,主要关注生产制造企业的产品层面的碳排放量化核算、核查、减排等,需要根据产品类型的不同确定不同核算边界的碳排放。对于B2B 类产品,可以核算“摇篮到大门”或“大门到大门”边界范围的部分碳足迹,B2C 的产品,可以核算“摇篮到坟墓”边界的生命周期碳足迹,也可以对各个阶段的分碳足迹进行分解并分别制定各阶段的碳足迹限额,分阶段分步骤开展产品生命周期各环节的碳减排工作。4.3.2 体系特点(一)系统性 27 碳足迹标准体系应涵盖湾区战略新型产业和传统优势产业一定时期所需的标准,结构上具有逻辑性,内容覆盖全面。碳足迹标准体系在结构上应包括普适性、全局性和通用性强的基础通用部分,面向碳足迹核算、评价、监测和报告部分,以及面向气候变化具体减缓和适应措施的部分。(二)科学性 碳足迹标准体系内的标准既要对现有研究和实践给予指导,也要反映科学发展的阶段性成果。通过制定标准,深化相关研究,提升对绿色低碳和高质量发展政策的支撑作用。(三)针对性 碳足迹的提出是面向可持续发展,在实践和政策制定方面要符合国家绿色低碳可持续发展和产业高质量转型要求。碳足迹标准体系应以既有国际通用方法学为基础,瞄准现有国际贸易技术壁垒发展方向,结合粤港澳大湾区产业发展实际情况,有针对性地推动标准制定,提高湾区产业应对气候变化工作的支撑能力。4.3.3 体系框架 根据碳足迹标准体系构建目的,提出重点产品碳足迹核算标准、监测要求、审定与核查、碳标签、服务平台、管理体系为一体的系统化解决方案,全面支撑重点行业和领域推进碳达峰碳中和工作,实现各类标准的协调配合。湾区碳足迹标准体系涵盖以下类别:28 图 4.1 碳足迹标准体系框架(1)基础通用(0)子体系主要针对碳足迹领域基础性、共性和系统性内容,例如术语定义分类、通用方法、数据质量评估等。(2)碳足迹评价(A)产品碳足迹评价标准及具体类别产品种类规则,产品的碳足迹评价标准包括产品的环境影响功能单位、系统边界、数据描述、现场数据质量、背景数据及清单分析等,以及碳足迹报告编制方法。(3)碳足迹监测(B)子体系主要规定碳足迹可包括的监测内容和方法、监测实施方面的标准,遵循 MRV 原则,要求建立产品碳排放的监测体系,开展碳排放监测方法、监测设备、监测平台实施等标准的研究。粤港澳大湾区碳足迹标准体系框架 基础通用(0)碳足迹评价(A)碳足迹监测(B)审定与核证(C)碳标签/标识(D)碳管理(E)术语定义分类 通用方法 数据质量评估 碳足迹评价标准 产品种类规则 监测方法 监测设备 监测实施指南 碳足迹报告要求 机构资质能力 人员要求 审定与核证程序 信息披露要求 碳足迹管理 标签/标识管理 保密要求 29(4)碳足迹审定与核查(C)碳足迹的颁发与核查需要独立的审定与核查机构。审定与核查机构的成立、资质审核、运行管理需要按照标准来执行。具体内容包括建立碳足迹审定与核查机构要求、审定与核查机构的服务范围及作用,人员以及核查程序的要求,以便指导第三方审定与核查机构规范开展碳足迹评价工作。(5)碳标签/标识(D)规定碳标签的样式、使用和管理,主要内容包括:制定碳足迹认证标识使用管理规定,规范碳足迹标识申请、审查、公示、撤销等流程,提高信息采集、信息公开力度,对碳足迹标识动态管理。(6)碳管理(E)碳足迹信息需要对外交流、公示,因此需要制定产品碳足迹披露等相关要求标准,指导企业将碳足迹或碳减排信息和措施向社会公示;信息保密要求;建议企业开展碳足迹管理体系。4.3.4 体系内容 碳足迹标准体系的建设,需要考虑系统解决企业参与碳标签制度所面临的技术问题。聚焦碳足迹评价工作的技术基础,即标准、监测、计量、核查与示范中所面临的关键技术和系统化集成体系建设问题,制定重点行业产品碳足迹相关技术及标准,结合试点示范应用等手段,形成创新性强、经30 济与社会发展急需的集碳足迹标准、计量、监测、核查为一体的技术支撑体系,为粤港澳大湾区建立碳标签制度,实现碳减排等工作提供重要技术基础。(1)碳足迹评价标准,解决产品生命周期碳排放量核算中的核算边界、核算方法、排放因子等方面的规范性和一致性问题。制定碳足迹评价标准,建立统一产品碳足迹评价的方法学框架,适用于指导第三方机构、企业及其他相关组织开展基于生命周期评价方法学的产品碳足迹评价通用要求。内容包括:范围,规范性引用文件,与温室气体有关、生命周期、碳足迹评价相关的术语和定义,碳足迹评价原则,评价目的、目标确定、功能单位定义、系统边界划分,数据的收集、分配与计算,碳足迹报告要求等。制定具体产品种类规则,结合粤港澳大湾区产业特点,覆盖电池类产品、光伏组件产品、电子类产品、纺织服装类产品、家具类产品、电器类产品、建材产品、珠宝首饰产品、食品、纸质类产品等,结合湾区产业产品生产实际特点,确定产品生产环节,包括能源、原材料、运输、工艺、消费、处置等过程的碳核算边界,确定数据收集清单及数据收集方式。(2)数据质量,解决重点行业产品碳排放计算以及单位产品碳排放标准制定过程中所面临的数据获取、质量控制、31 不确定度评估以及限定值、先进值的确定方法等方面的问题。建设高质量核算模型,建立面向产品全生命周期供应链环境下的碳足迹模型,包括原材料获取、制造、分销、使用和回收处置各阶段。根据产品特点,识别生命周期碳排放重点关键环节,明确不同产品的系统边界及计算原则,保证碳足迹数据的科学性、统一性和透明性。(3)碳足迹计量与监测,解决企业在碳排放管控过程中所面临的燃料端、物料端、排放端的计量、监测等方面的系统性技术要求和相关监测计量方法和标准的缺失问题。建立符合国际规范、符合产业发展特点的碳足迹基础数据集,统一基础数据,按照产品类别,收集、计算、整理配套数据集,提升碳足迹核算的透明性、一致性和可比性。对数据质量进行科学评价确认,引入碳计量溯源服务体系,通过样本测量、动态跟踪、线上系统等手段进行计量、监测、统计,由第三方技术机构开展线上线下核查,保证碳足迹数据可追溯,保证数据质量和认可度,推动基础数据的汇集和共享。(4)碳足迹示范,解决企业参与碳足迹评价工作中缺少集标准、计量、监测、审定与核查为一体的集成示范案例,解决标准、计量、监测、核查等在支撑碳足迹评价工作中协同性差和集成服务能力薄弱的问题,为参与碳足迹评价的企业、第三方机构解决基础性技术问题。32 绿色低碳产业示范。选择充储能设施设备、能源电子、光伏光热等绿色低碳战略新兴产业的重点产品开展碳足迹标识认证示范,形成绿色低碳核心竞争力,实现“产业绿色低碳化,绿色低碳产业化”。民生保障产业示范。选择绿色属性突出、消费量大的民生产品开展碳足迹标识认证示范,与消费场景充分互动,增加绿色消费产品供给,使消费者“有迹可循”,形成“消费即生产”新业态。外向型产业示范。选择在国际绿色低碳贸易壁垒冲击大、大湾区产业链完整的出口产品开展碳足迹标识认证示范,辐射产业及上下游供应链的低碳发展,应对绿色低碳技术贸易壁垒,增强国际贸易竞争力。供应链降碳示范。开展供应链降碳示范,通过碳足迹分析供应链降碳关键点,带动绿色制造、绿色包装、绿色运输、废弃物绿色回收与循环利用,推动绿色产业链与绿色供应链协同发展。头部企业率先示范。发挥行业头部企业示范引领作用,树立标杆典型,以点带面,辐射产业及上下游供应链,形成一批效果突出、带动性强的示范案例。(5)碳足迹核查,解决审定与核查合格评定活动的规范性问题,为各利益相关方建立信心。基于生命周期理论,结合大湾区产业发展和产品特色,供应链覆盖面,活动数据33 丰富程度,排放因子质量等级等因素,形成碳足迹核查过程、方法、步骤的实施规则文件,保证碳足迹核查的统一性、合规性。4.4 实施路径 碳足迹标准体系的构建与实施是一项系统、长期的工作,需要根据产业发展、标签制度实施等实际情况,加快推进标准制修订工作,具体提出以下实施建议。4.5.1 成立标准建设统一协调机构 成立湾区碳足迹标准建设统一协调机构,统筹湾区碳足迹标准的规划、制定和落实。协调企业、行业协会、第三方机构、科研机构等资源共享,共同完善碳足迹标准,挖掘新的标准化需求,基于最佳实践提炼新的标准,激发标准生态体系的循环,共同构建一个可持续发展、可创造价值的标准生态体系;协调标准与其他标准保持统一,对标准落地时出现的问题给予协调和建议;开展标准的宣传推广、培训举办、标准成果出版等工作。湾区碳足迹标准建设统一协调机构建议可以由政府有关部门牵头,依托粤港澳大湾区(深港)计量检测认证发展促进联盟下设的碳足迹创新技术委员会组织实施,负责碳足迹标准建设的总体谋划、统筹推进,组织指导粤港澳大湾区碳足迹标准应用和示范工作。34 4.4.2 加强碳足迹标准化工作调研 广泛科学的工作调研对湾区碳足迹标准体系的实施具有关键作用,通过借鉴国内外相关经验,充分研究湾区产业、行业发展实际需求,进一步提升湾区碳足迹标准体系的完整性与适用性,调研内容主要可包括:(1)调研湾区战略新型产业和传统优势产业发展全周期内碳足迹核算和评价领域的标准实际需求,为核湾区碳足迹标准体系的构建与实施提供基础依据;(2)调研行业在碳足迹领域的最新动态,标准制修订工作最新进展,包括标准目录、分类、制修订工作流程的变化等情况,保证湾区碳足迹标准与相关文件的衔接性,为湾区碳足迹标准体系的构建与实施提供参考。4.4.3 明确标准制修订工作优先级 基于碳足迹标准化工作现状,为提高实施效率,应当首先明确核碳足迹标准优先级,重点推进碳足迹评价实施领域标准制修订工作,主要包括:重点产品种类规则、碳足迹审定与核查以及碳标签/标识方面的标准。4.4.4 丰富碳足迹标准的供给形式 建立标准采信机制,对于聚焦新技术、新产业、新业态、新模式等创新发展需求,实施效果好、符合标准制定范围的先进标准如团体标准、企业标准等,及时采信为湾区碳足迹标准;减少重复建设,提高标准利用效率,完善湾区碳足迹35 标准化技术文件制度,开源标准等标准供给形式。4.4.5 推进碳足迹标准的实施应用 国家标准化发展纲要提出不但要建立科学完善的标准体系,也要不断强化标准实施应用。因此,推进碳足迹标准的实施应用对于提升湾区乃至全国产品碳足迹标准化水平同样具有重要意义。实施应用方面需要关注以下几点:(1)湾区碳足迹标准是落实碳足迹管理和评价要求的技术规范,需要在实践中加强对湾区碳足迹标准的宣传力度,提升湾区碳足迹标准的影响力。在标准编制过程中,应充分征求碳足迹评价技术利用相关如企业、行业协会、第三方机构等单位意见,并对标准实施效果进行评估与修订,提高标准的适用性与可操作性。(2)加强湾区碳足迹标准的实施监督,健全湾区碳足迹标准制修订实施全过程的跟踪、实现标准研制、实施和信息反馈闭环管理,建立对湾区碳足迹标准实施情况的评估和反馈机制,鼓励行业、协会、第三方机构等相关方对标准实施情况进行监督,提出修订建议,有利于湾区碳足迹标准化工作的进一步推进。(3)加强与发达国家合作交流,鼓励企业尤其是出口贸易企业开展碳标签认证工作,开展碳标签制度试点行业,逐渐建立在口岸对进出口商品进行碳标签制度。一定程度上规避贸易壁垒,稳定进出口贸易,对低碳经济发展具有一定 36 帮助。4.5 保障措施 碳足迹标准体系建设旨在为建立和实施大湾区碳标签制度提供技术支撑,为后续在粤港澳大湾区协同推进碳足迹标准应用示范工作。4.5.1 加强组织实施 强化政府、行业、协会、第三方技术机构的协同合作,形成上下联动、共同推进,强化系统谋划和稳步推进,建立责任明确、协调有序、监管有力的工作体系,实现跨区域协作,打好组合拳,共同推进湾区碳足迹标准建设。4.5.2 强化部门联动 加强部门间联动合作与资源共享,充分利用市场资源,鼓励企业、行业协会、高校、技术机构等主动申报制修订技术领先、市场成熟度高的标准,增加碳足迹标准的市场供给。推动碳足迹标准的应用落地,形成碳足迹在绿色采购、绿色金融、绿色建筑、碳普惠等采信应用和持续机制。4.5.3 注重品牌推广 做好碳足迹政策解读和绿色低碳宣传教育,推广碳足迹标准应用优秀案例,加强国际交流与合作,利用香港国际化窗口优势,传播绿色低碳理念,推广粤港澳大湾区碳足迹质量品牌,引导公众参与,通过共谋共建共管共评共享,营造37 绿色低碳生产生活新风尚,不断提升碳足迹标准及应用影响力。38 第五章 结论 实现碳达峰、碳中和涉及产业结构转型、经济增长方式转变,需要完善政策、经济和技术的顶层设计,而制定标准是不可或缺的技术基础。标准化工作作为政策落地实施和服务市场化机制的重要抓手,对实现“双碳”目标具有重要支撑作用,是实现节能降碳目标的约束手段,是促进绿色低碳技术推广应用的有效途径,也是国际通行的应对气候变化规则的重要组成部分。当前我国产品碳足迹评价工作尚处于起步阶段,在产品碳足迹评价标准、碳标签制度建立等方面仍有较大进步空间。当前双碳背景下,以粤港澳大湾区为试点,建立碳足迹标准体系,是建立碳标签制度的重要技术基础,是国家可持续发展、产业高质量绿色低碳转型升级,消费者绿色消费,以及积极应对国际贸易形势的必然选择。本研究建立以生产制造企业、第三方审定与核查机构、监管机构为标准化实施主体,集标准、计量、监测、核查为一体的碳足迹标准支撑体系,内容涵盖基础通用、评价、监测、审定与核查、碳标识/标签和碳管理,为碳足迹标准化工作提供指导,全面支撑重点行业和领域推进碳达峰碳中和工作,实现各类标准的协调配合。在标准建设实施方面,提出成立标准建设统一协调机构,加强碳足迹标准化工作调研、39 明确标准制修订工作优先级、丰富碳足迹标准的供给形式,以及推进碳足迹标准实施应用等六方面的建议。产品碳足迹标准体系的建立,将为碳排放量化、核算、和监管提供理论依据,是开展产品碳足迹评价工作的依据和准则,有助于加快推进产业绿色低碳升级,优化产业结构,减少出口贸易摩擦,通过逐步引导并满足消费者绿色消费的观念,构建绿色低碳发展的新格局。
16人已浏览
2023-03-29 78页
5星级
沃丰科技:2023机器人行业智能售后服务转型白皮书(38页).pdf
机器人是自动执行工作的机器装置,包括一切模拟人类行为或思想与模拟其他生物的机械。机器人技术是综合了计算机、控制论、机构学、信息和传感技术、人工智能、仿生学等多学科而形成的高新技术,是当代研究十分活跃,应用日益广泛的领域。国际标准中,ISO(2021)将机器人划分为工业机器人、服务机器人以及医疗机器人。IFR将机器人划分为工业机器人以及服务机器人;我国2020年新标准将机器人划分为工业机器人、服务机器人、特种机器人和其他机器人。2021年,机器人产业在中国迎来了前所未有的发展机遇,机器人产业已经成为助力未来中国经济发展的关键一环。在诸多因素的影响下,协作、手术、仓储、服务、清洁、工业等各种机器人细分品类百花齐放,国内机器人企业的竞争悄悄走向白热化。在这种情况下,研发实力、供应链能力、销售能力和服务能力是影响机器人企业竞争力的四大关键要素,其中能够决定客户是否复购的,往往来自于厂商提供的服务能力。沃丰科技总结多年的机器人企业服务经验凝结成这一本白皮书,本白皮书聚焦机器人行业,以机器人服务中的咨询、安装、维修、培训、投诉、分析等六大场景为基线,深入分析各细分场景下机器人企业智能化服务转型中的痛点问题,以机器人行业中的五大标杆企业案例作为参考,针对各个企业的个性化问题提出针对性的解决方案,帮助诸多机器人企业实现智能售后服务转型。研究梳理机器人行业现状及服务痛点 分析机器人企业服务中的六大场景及企业需求深入调研分析机器人行业的五大标杆案例总结沃丰科技ServiceGo解决方案及方案优势PART ONE机器人行业研 究 背 景中国是全球最大的机器人市场和增长最快的新兴市场 中国市场占全球市场份额一半以上据国泰君安证券研究显示:20162022 年,全球机器人市场复合增长率 12%,21年市场规模 366亿美元(出货 50 万台),IFR 预测 22 年市场规模为 405 亿美元/YOY 14%。22 年市场规模由高到低预计为:服务机器人 138 亿美元/占比 34%、工业机器人 132 亿美元/占比33%、特种机器人 70 亿美元/占比 17%、物流机器人 65 亿美元/占比 16%。从成长速度看,20162022 年复合增速由高到低分别是:物流机器人 23%、服务机器人 21%、特种机器人 13%、工业机器人 3%。全球工业机器人市场规模整体呈扩大趋势22 年工业机器人市场规模 87 亿美元,5 年复合增速 13.6 年服务机器人市场规模 65 亿美元,5 年复合增速 40.2 年特种机器人市场规模 22 亿美元,5 年复合增速 29.7%当前,在被称为制造业皇冠上的明珠的机器人领域,中国正在不断突破。在工业机器人领域,连续9年销量位居第一,而且,日前中国机器人又取得一重要突破,2021 年,中国协作机器人销量在全球协作机器人市场整体销量的占比达51.02%。根据浙商证券研究报告显示:预计2020-2024年全球、中国机器人市场规模CAGR约18%、22%工业机器人:预计2020-2024年中国市场规模CAGR约15%服务机器人:预计2020-2024年中国市场规模CAGR约29%特种机器人:预计2020-2024年中国市场规模CAGR约27%“机器人 ”创造新需求,不同应用领域机器人百花齐放 按照中国国家标准,机器人大致可以分为四大类,工业机器人、个人/家用服务机器人,公共服务机器人与特种机器人。不同类型机器人均受益于应用场景的不断丰富,市场规模持续扩张。工业机器人在传统汽车、3C 应用领域需求保持旺盛,同时近年来中国新能源相关业务的快速发展成为行业重要增长点。人口老龄化背景下,服务机器人市场空间广阔。机器人在教育、康养等方向的应用可以有效缓解劳动力供需矛盾。特种机器人在地震、洪涝灾害、极端天气以及公共安全事件中具有突出作用。随着中国在相应场景的处理不断精细化、专业化,特种机器人迎来新的机遇期。控制器减速器伺服电机传感器末端执行器芯片雷达导航定位芯片上游中游航空航天仓储物流汽车制造特种安防电子电力批发零售石油化工餐饮住宿医疗服务食品饮料医疗服务医疗服务机械制造驱动系统控制系统感知系统环境交互系统人体交互系统码垛机器人搬运机器人喷涂机器人公共服务机器人检测机器人分拣机器人家庭服务机器人专业领域服务机器人装配机器人下游三大驱动因素助力机器人产业腾飞中国是全球规模最大,增速最快的机器人市场,20012022 年机器人销量从 700 台增长至 30.3 万台(销售规模 87 亿美元),复合增速 33.5%。伴随语音识别、机器视觉、自主导航、人机交互等智能技术的发展,传统机器人行业进入快速智能化转型期。2020年,中国智能机器人市场规模达到168亿元,尽管受疫情等外生因素,在整体经济形势相对低迷的背景下,机器人行业仍然表现出较为强势的增长力,2021年市场规模突破250亿。疫情的反复爆发催生了多领域对无人化、自动化、智能化生产力及劳动力的旺盛需求,整个机器人产业呈现健康走势。艾瑞预测,2025年中国智能机器人市场规模接近千亿。相较于工业机器人,应用于非工业领域的机器人存在更多与人直接接触的机会,对机器人智能化的要求更高,智能渗透率大于工业领域的渗透情况。需求端:应对人口形势变化,催化机器人行业需求。随着老龄化程度进一步加深。机器人作为人类生产生活的重要工具和应对人口老龄化的得力助手,有利于推动生产水平提高、生活品质提升,市场前景广阔。政策端:引导技术创新,致力提升制造业机器人密度,拓宽应用深度广度。国家出台多项政策,明确智能机器人产业顶层战略地位,突破核心部件与关键技术难点,助力机器人向多样化应用领域延伸。供给端:国产工业机器人稳步发展;核心零部件技术有望持续突破;产业集群逐步形成,同时工程师人才储备有望加强。人口老龄化驱动产业变革机器人作为国家战略新兴产业之一,是国家从制造大国发展成为制造强国的重要抓手,在当今国家制造业处于人口红利逐渐消失、产业迫切需要转型升级的背景下,提升产业智能化升级将助力企业提高制造效率,提升品质,从而增强企业综合竞争力。当前,机器人已经成为推动中国经济转型和产业升级的核心动力。它将创造一个强大的引擎,重建生产、分配、交换和消费等经济活动,形成新的智能需求,提高生产效率,推动整个经济社会实现高质量发展。人口老龄化程度进一步加深根据国家统计局公布的数据,2022 年中国人口 141175 万人,较上年末减少 85 万人。从年龄结构看,60 岁以上占比达 19.8%,65 岁及以上人口 占比达 14.9%。据国家卫健委,“十四五”时期,我国将从轻度老龄化进入到中度老龄化阶段。“婴儿潮”人群陆续退休,后备劳动力缺口或将进一步显现。1962-1975 年,中国每年出生人口数超过 2000 万;自 2017 年起,这一代人群相继步入退休。对于制造企业高端人才来说,职业培训的速度已经跟不上企业对劳动者需求增长的速度了,很多企业面临用工不足的问题。近年人口出生率持续走低数据显示,2021年出生人口为141260万人,比上一年增加48万人。全年出生人口1062万,人口出生率为7.52%,死亡人口1014万人,人口死亡率为7.18%,人口自然增长率为0.34%。政策引领驱动技术变革机器人作为国家战略新兴产业之一,是国家从制造大国发展成为制造强国的重要抓手,在当今国家制造业处于人口红利逐渐消失、产业迫切需要转型升级的背景下,提升产业智能化升级将助力企业提高制造效率,提升品质,从而增强企业综合竞争力。十三五规划加快构建智能穿戴设备、高级机器人、智能汽车等新兴智能终端产业体系和政策环境关于促进机器人产业健康发展的通知 国务院关于推进供给侧结构性改革加快制造业转型升级工作情况的报告培育创建新材料、机器人等制造业创新中心,启动国家制造业创新中心网络化布局的顶层设计推动机器人产业理性发展,强化技术创新能力,加快创新科技成果转化加快构建智能穿戴设备、高级机器人、智能汽车等新兴智能终端产业体系和政策环境增强制造业核心竞争力三年行动计划(2018-2020年)十四五规划推动机器人、先进轨道交通装备、先进电力装备、工程机械、高端数控机床、医药及医疗设备等产业创新发展“机器人 ”应用行动实施方案目标到2025年,制造业机器人密度较2020年实现翻番,服务机器人、特种机器人行业应用深度和广度显著提升 技术进步引领,核心部件补短板机器人三大核心技术模块:环境感知、人机交互、运动控制。机器人作为一种智能化软硬件结合的产品,性能提升的根基在于算法,核心算法(如 SLAM、路径规划、避障等)、数据资源、计算能力是行业中长期竞争关键壁垒。软硬件升级相辅相成,AI 技术推动服务机器人智能化提升,以 SLAM、机器视觉、语音交互、深度学习等为核心的 AI 技术不断发展能够推动机器人智能决策能力和场景覆盖范围的提升。567891234101112公元前4世纪亚里士多德提出了机器人的设想1893年,乔治摩尔设计了以蒸汽为动力的机器人1927年,国西屋工程师温斯利制造了 Televox机器人1933年,温斯利发明了Elektro机器人1963 年,NASA造出了“机动多关节假人的机器人1973年,加藤一郎研发出真人大小的人 形 智 能 机 器 人WABOT-11986年,本田开发了双足机器人E01993-1997年,本田相继开发出P1、P2、P3 机器人2000年P系列中的第4台也是最后一台机器人-P4诞生2000年,我国独立研制出“先行者”号机器人2014年,初代Atlas机器人正式发布2022年擎天柱落户特斯拉国产替代:从复制跟随到技术引领,从国产替代到出口拓展根据CRIA与IFR数据,2021年国产工业机器人销量约8.7万台,同比增长51%,国产市场占有率约32%。根据MIR DATABANK数据,前三季度内资厂商市场份额约36%,较2021年前三季度比例提升约4%。一方面,在补短板政策指引下,机器人核心零部件如精密减速机、伺服系统、控制器等有望加速实现技术突破。另一方面,国产替代道路愈发清晰,“自主可控”路线或进一步加速国产产品崛起。20172017 年以前,中国工业机器人行业主要是国产替代阶段。国内的机器人公司主要通过模仿四大家族,以更低的成本国产替代四大家族的产品。20202017 年以后,结合 AI 深度学习、3D 视觉、力控等新技术的变革,中国工业机器人行业开始从国产替代走向市场引领。20172022 年行业市场规模复合增速 13.6%。2020 年新能源开始扩产潮,中国新能源产业引领全球,带动机器人国产化替代。锂电池作为新兴行业,愿意协同各方探索标准化工艺,工业领域的国产机器人得以借势追赶,技术能力的积累使国内机器人厂商具备满足工业场景客户需求的能力。工业机器人:能源转型机遇期,进口替代提速国产工业机器人份额在 20 年疫情后得到了快速提升。服务机器人:全面进入海外市场拓展阶段中国服务机器人企业开始全面拓展海外市场。在国内市场,移动机器人、清洁机器人、配送机器人等品类国产品牌市场份额占据领先优势,海外同样实现了较好的市场拓展。其他特种机器人:多种场景加速应用煤矿、深海、极地等场景加速应用,新兴机器人厂商数量将快速增长,行业竞争日趋激烈。行业背景总结机器人赛道在人口和政策双从红利下百花齐放,当下,中国已经成为全球最大的机器人市场。在2020年,我国的机器人市场规模已经达到了712亿元。今天的机器人创业战场,从研发到零配件生产到本体制造到系统集成、售后服务环节,已然呈现出一派百家争鸣的态势。中国机器人产业正处在产能扩张向技术突破转变的阶段,后市场尚未形成,从用户角度考虑,工业4.0让企业更加关注成套工业装备的维护与快速修理,企业现金流普遍紧张,带来机器人产业融资租赁与二手交易市场潜在商机。机器人行业装机量正在增加,并将于未来大幅上涨 机器人行业海外出口将得到增长 机器人产品和技术将不断提升,企业须做好后市场服务准备当下,机器人产业正在面临两个变化:存量市场悄然来临,机器人近年来发展迅猛,但增速开始出现拐点,进入存量发展市场。万物物联已经开启,在智能设备万物互联的发展大方向下,机器人产业的服务体系面临新的挑战和机遇。PART TWO机器人行业服 务 现 状国产机器人内卷之下,提升服务能力或成初创团队突围点国内机器人企业的竞争已经走向白热化根据国家统计局发布的最新数据显示,2021年前三季度,工业机器人产量同比增长57.8%。天眼查数据显示,我国现有超过9.3万家工业机器人相关企业。近10万玩家共同抢食中国市场虽然是一块肥美蛋糕,但并不好啃,一场在存量市场的厮杀即将拉开帷幕。中国市场客户的特点是决策慢、ROI要求高。在面向国内市场进行拓展的过程中,中国客户往往需要花费大量的时间对机器人产品进行POC试点应用,从初次购买到二次复购中间链条漫长。同质化成全行业的共同难题实际上,目前市面上的工业机器人企业大多是互相模仿的技术方案、性能和外观设计,主要面向的工艺环节也大多围绕着码垛、焊接、装配、物流等领域开展自身业务。尽管“机器换人”是大势所趋,但机器人初创企业往往需要通过服务头部大客户才能够打造出自己的标杆场景,进而去挖掘水下客户需求实现进一步盈利。但大客户的场景又是有限的,眼下机器人企业间的产品同质化趋势严重,一些初创企业为了抓住更多头部客户,满足国内客户企业对ROI测算要求,往往会选择主动压缩盈利空间,试图以低价的模式试图获得大KA的青睐,间接导致中国机器人市场内卷走向价格竞赛。价格内卷并不是获客的长久之计。相反地,价格战不仅带来了一场“互联网式”的恶性竞争,还带来了新的困境:在打价格战时,企业们会尽可能地压缩成本以提升利润,因此在核心零部件的选择上,往往难以选用最优配置的零部件,机器人产品的故障率也逐渐增高。故障率提高带来的结果是,客户体验将大打折扣。在同质化竞赛中,人人都希望通过比拼创新能力抓住增量用户,但如果想让机器人走得更远,除了要“应用为王”,还要考虑“服务至上”。各类机器人服务现状暴露诸多问题国际标准中,ISO(2021)将机器人划分为工业机器人、服务机器人以及医疗机器人。IFR将机器人划分为工业机器人以及服务机器人;我国2020年新标准将机器人划分为工业机器人、服务机器人、特种机器人和其他机器人。本部分将按照这个分类来梳理各个类型机器人的服务难点。工业机器人缺乏基本的BI数据管理,企业往往是被动响应客户需求。导致了服务过程不透明,派单效率低下,服务周期长、大部分情况工程师花很长时间到现场机器人的维修技术要求非常高,一方面企业不得不快速解决和响应客户需求,但另一方面一部分服务工程师技术难以匹配专业服务的要求部分设备缺乏IoT的物联系统集成,下游不能实时获取设备状态数据机器人不良品的处理水平落后,简单来说这使得资产利用率不高当下机器人更新迭代较快,配件管理和提供的供应链也是新的难题 服务机器人售后派单和维修不及时,等待时间长产品更新迭代快,备件管理和替用成为难题,备件供应链的痛点多服务团队分散,上门周期长缺乏必要的维修技术、服务一次性完好率不高中国工业和信息化部的数据显示:在客诉方面,售后服务响应时间长、维修周期长、备件等待时间长和售后服务网点少、售后服务团队员工技术不行是最常见的五大客诉类别。其他机器人而家庭智能硬件终端的困局是,多数是通过电商环节进行销售,厂商往往不知道客户是谁、产品卖给了谁。这时候产品销售后往往只是一次获客,消费者没有成为终身客户,不产生服务营收或者复购售后服务成本高,对于消费者来说,也很难获得愉悦的服务体验售后服务仍是全服务中最薄弱也最容易忽视的一环当前,机器人的竞赛已经从比拼价格的初期走入产品为王和服务为王的中后期,机器人产业蓬勃发展,不断刷新市场高度,对服务体系也提出了重大挑战。对于制造企业和集成商而言,服务的重要性已经不断凸显,提供服务能力已经成为补齐机器人企业综合实力的关键一环。但对于大多数厂家而言,售后服务依然是全服务中最薄弱也最容易忽视的一环,现存痛点明显。设备维修派单,接单,处理各个节点状态难以获取,维修进度不透明,设备维修无法提前预知故障信息,有时需要23次到现场才能解决问题,不能快速处理解决故障,维修周期长。垂直于单一领域,产品生命周期短,产品线扩张迭代快、品类多,服务需求复杂,对服务能力的响应要求高。缺乏备品备件台账和流通去向管理,原厂副厂配件混用,严重影响运维效果。且机器人产品更新迭代快,备件管理和替用也成为难题,备件供应链的痛点多。缺乏数据沉淀,很多有效的数据是分散性的,留存在不同的系统和设备中,形成了单个的信息孤岛,未有效进行数据整合,造成数据利用率低,没有发挥数据价值。售后服务过程不透明,维修周期长产品迭代快,服务需求复杂备件管理难,备件供应链痛点缺乏数据沉淀,数据分散,存在信息孤岛服务渠道分散,需要在各个反馈渠道之间手动切换和手动记录、同步信息,导致售后派单效率低下,维修不及时,客户响应慢,等待时间长。售后服务渠道分散,客户响应慢机器人的维修技术要求非常高,各类服务人员分布到各地,维修水平不一,一部分服务工程师技术难以匹配专业服务的要求,人员绩效难以精确统计,管理培训难度大。售后服务人员管理难,维修技术要求高机器人是新生产业,普遍还没有建立健全服务体系,缺乏服务业规则和流程,流程不完善、不规范使其售后服务运作起来效率不高。如何快速搭建服务运营体系、创新服务模式是目前面临的重大挑战。缺乏认知服务体系,售后服务流程不完善PART THREE售后服务成新型增长点售后咨询场景:全渠道触达用户,及时响应用户需求全渠道广泛覆盖,覆盖国内外服务渠道,可接入网页、微信、小程序、APP、企业微信、钉钉、飞书、WhatsApp、Facebook、Twitter等多个渠道。多模式便捷交流,全渠道客服系统提供图文、音视频、表情包、文件等内容传输,沟通更流畅,服务不掉线。多模式便捷交流当用户使用产品出现一些疑问或者问题时,往往需要寻求官方售后人员联系,以寻求解决办法,全渠道客服系统能够实现多渠道用户咨询触达,及时响应用户需求。AI支撑,7*24小时在线,底层AI技术支撑的AI文本机器人、语音机器人客服,通过情景重现、语音语义融合,语义增量自适应,让机器像人一样去理解、去思考企业级视频客服,实时在线聊天、内容文件共享的企业级视频客服,让企业与客户随时随地面对面交流。全渠道广泛覆盖网页微信小程序APP企业微信钉钉WhatsAppFacebookTwitter呼叫中心工单系统语音机器人坐席助手在线客服视频客服文本机器人智能质检客服解答知识库查询业务记录问题处理7*24小时在线企业级视频客服客服人员售后业务咨询售后安装场景:从工单生成到安装结束全程流程清晰可见无论是工业机器人还是服务机器人,很多机器人由于其生产工艺较高、机器较大、零件较多的情况,那么就必然面临着厂家派人安装的问题。在这一场景中,很多客户面临安装服务响应慢、安装过程流程长、安装人员行迹难把控、安装售后无保障的问题,针对这些痛点问题,沃丰科技为机器人的安装场景提供给了一整套解决方案,从安装需求发起到安装结束满意度回访的全流程实现线上化管控,能够随时随地查看安装进度,做好安装准备。工单生成及派单用户能够在多种平台进行安装咨询与地址信息录入,并自动生成工单,同时安装工单支持手动派单、自动派单、工单池抢单等多种形式01工程师匹配借助智能化调度平台,根据地理位置、客户偏好合理调度资源,自动预约最近服务站,匹配出色技能工程师,AI智能分析实时提供优质服务建议02轨迹实时查看客户能够实时查看移动服务轨迹,高效管理现场作业流程,为客户提供更加优质的服务03工程师签到安装过程中能够支持工程师进行打卡签到,以便与确认工程师的服务真实性04现场勘察在现场勘查过程中,支持工程师将现场勘查结果进行文本、拍照和视频录入05服务评价在安装结束后,用户可对于安装服务进行满意度评价,支持自动回访和人工回访两种形式06 安装流程优势:自动生成工单准确方便自动匹配工程师避免资源浪费线上查看轨迹方便快捷工程师管控保障服务真实现场勘察保障安装速度服务评价进一步提升工程师服务质量售后维修场景:工程师上门服务,售后维修无忧售后维修场景是售后服务过程中经常遇到的场景,产品在使用中不免会出现各种问题,维修不及时,会严重影响用户的使用体验,甚至会影响客户生产进度。ServiceGo现场服务管理,覆盖现场服务全流程,管理更透明、更智能。01 全渠道受理服务对接渠道覆盖呼叫中心、微信服务号、APP、H5、邮件、小程序、官网等,用户可随时随地咨询业务、提交工单,实现现场服务全流程数智化。02 服务工程师管理借助智能化调度平台,根据地理位置、客户偏好合理调度资源,实时查看移动服务轨迹,高效管理现场作业流程,为客户提供更优质的售后服务。03 设备合同管理全面整合设备相关信息,基于设备创建维保计划,提供周期性的维保、巡检等预防性服务,全流程管理监控合同流程,推动服务合同的全生命周期管理。04 备件库存管理提供完善的仓储备件管理功能,统一管理全国仓库,支持备件申请、调拨、核销、退回等备件全流程的管理,保证维修服务的及时性,降低库存成本。资源直管资源直管全连接,服务站点和全部一线交付人员通过移动APP实现,备件也通过APP进行可视化管理。交付透明交付透明客户通过前端微信/小程序精确掌握每一次交付人员、备件、流程的工作状态,交付信息全程数字化记录,电子化,无纸件。智能调度智能调度总部借助软件平台实现自动调度、集中管控、应急指挥。应用效果应用效果售后投诉场景:客户投诉反馈,倾听用户的声音客户投诉,是企业不得不面对的一项重要工作。面对投诉,若处理得当,则转危为机,不仅避免差评,甚至还有机会因为优秀服务而获得的好评。ServiceGo新一代智能客户投诉管理系统智能投诉工作流,充分串联多部门协同作业,显著提高客诉处理效率。多种低风险客诉渠道,显著降低高风险客诉几率,连接国内国外超过几十种渠道,并通过提高官网Web、H5、客户端App、微信、小程序、微博、Facebook、LINE、WhatsApp等低风险社交客诉渠道的便捷度,让全世界的客户可以更加轻松表达自己的不满,反馈自己的意见。多系统集成,数据对接,通过标准数据接口,轻松实现与客户内部系统各个场景的数据集成,对于大型本地项目,也支持主动对接客户内部数据总线,支持将第三方界面嵌入到系统内,实现同页面数据识别与处理,支持投诉单SDK嵌入到第三方平台或微信等公众平台,实现数据获取。自定义客诉处理流程,自定义构建符合企业规章制度而又灵活自主的智能投诉处理工作流,实现跨部门、跨层级机构协同处理用户投诉案件;自定义触发逻辑,实现投诉流程内多种场景的实时提醒。解决方案推荐服务,对于典型客户投诉案例,支持一键生成知识库解决方案,基于投诉工单主题,自动筛选知识库解决方案,并形成关联知识库列表,供坐席人员参考。AI智能推荐,基于工单主题与描述信息,AI自动推荐相关解决方案,并根据客户画像实现智能风险提醒。售后人员培训:两大路径实现工程师从小白到资深 售后人员业务水平影响着用户的售后满意度,售后技术人员普遍存在的短板,一般表现为三方面:专业知识的系统性及其深度、售后思维的科学化及现代化和践动手作业的技能综合性。支持课程学习、练习任务、考试任务等多种任务模式支持文本对练、语音对练、幻灯片演讲练习等多种练习模式支持情景对话练习、一问一答练习、单一话术练习等多种练习方式,满足售后人员的多种交互场景智能陪练平台工程师管理人员1 1 课程课程学习学习2AI2AI陪练陪练辅导辅导3 3 智能智能评分评分4 4 提升提升计划计划5 5 考试考试验证验证1 1 课程课程发布发布2 2 任务任务管理管理3 3 学习学习监督监督4 4 团队团队分析分析5 5 辅导辅导提升提升了解故障代码/故障现象,故障原因,解决措施等点击故障代码/故障现象可以展开该条下面的故障原因,点击故障原因,展开该条故障原因下面的解决措施,各项内容均支持模糊搜索企业知识库售后分析场景:用户信息深度挖掘带来增长新机遇随着移动互联网流量见顶,互联网红利消失殆尽。当前市场将由增量逐渐转变为增量存量共同发展的模式,尤其是存量市场的发展会提速。抢夺用户成为企业的一大难题。与其抢夺新用户,对老用户进行留存和复购成为企业新的增长点。在很多企业的内部,留存着诸多的客户信息,从用户咨询、购买、安装到售后的全路径上都留下了海量的用户数据,深挖用户数据,生成用户画像,捕捉用户关注点,促成用户复购成为企业的一个新的增长路径。沃丰科技推出的Insight数据报表,为企业关注的用户信息生成用户报表,进行可视化展示,帮助企业生成战略决策。数据分析能力丰富,数据全方位呈现具备对比钻取、趋势分析、地理分析、高级计算等多种能力,丰富的可视化能力与交互操作,数据可读性强,快速发现业务问题nsight数据大屏,数据实时监控数据分析结果通过仪表盘和大屏的方式呈现,自定义动态炫酷的可视化大屏,企业形象的私人定制,数据业务信息实时监控,让上一秒发生的事情下一秒就知道可视化拖拽操作,简单易用自助式的可视化探索分析服务,预置丰富的数据分析可视化报表,业务数据生成报告,降低业务人员使用门槛全自定义自动化报表,免去重复操作负担支持自定义数据建模,报表一次实施,每次重复使用,数据支持各种函数计算,满足计算要求,满足用户复杂的自定义分析场景多系统对接,实现跨系统数据分析Insight数据中心内部无缝衔接Udesk产品,外部支持企业系统数据接入,通过数据建模,得以连接不同系统的数据孤岛,数据即时同步Insight绩效分析,多职场数据管理效率提升高性能大数据计算分析能力,可实现周、月、季、年数据极速计算;采用关键绩效指标(KPI)进行评估,模型验证速度快,考核针对性强,全方位洞察客户服务PART FOUR机器人企业标 杆 案 例高仙机器人高仙机器人成立于2013年,已在服务机器人、自动扫地车、安防机器人等多个领域实现商用,向近百家智能机器人终端企业提供商用解决方案,业务范围包括工业物流、交通枢纽、商业地产等主要应用场景。截至目前,高仙已为全球逾40个国家和地区的2000多个客户提供超过4亿公里的清洁服务。售后部门服务的终端客户与销售合同的客户,没有形成有效同步与管理。自研系统未与其他系统全面打通,导致设备信息维护困难,成本高昂。原有系统一直未实现客户对于仓库额度管理、库存预占等功能要求。系统内角色繁杂、权限定义复杂,业务流程定制化程度要求高,并且对界面自定义、过滤器等有较高需求。客户简介客户需求高仙机器人商用清洁机器人01整合电话、线下、表单等各渠道带来的销售线索,按照直销、经销、经销子客户渠道进行区分,分别设置线索跟进流程和权限规则,实现线索商机高效管理。02系统支持从服务受理、派工、配件申请、维修处理到回访的闭环管理和实时跟踪,确保服务的及时性。04借助移动端App,服务人员可随时更新处理状态,保证服务及时性、过程透明化。03设置员工跟进线索、商机、签约客户等行为的积分,实行积分管理制度激励员工签单。沃丰科技解决方案05提供多维度数据与过程分析,把控服务质量,优化客户服务体验。工单管理工单管理设备管理设备管理备件管理备件管理配件调拨配件调拨服务结算服务结算客户管理客户管理应用效果应用效果ServiceGo满足了高仙机器人售后咨询、备品备件、现场服务等售后服务管理需求,让企业资源管理(产品、备件)和服务管理(现场服务人员、客服)相结合,实现线上线下全面打通,帮助高仙机器人完成了售后服务全流程数字化管理。知名德国机器人企业知名德国机器人是世界工业机器人行业的领头羊。其在全球拥有20多个子公司,为客户提供智能自动化解决方案,从机器人、工作单元到全自动系统及其联网,遍及汽车、电子产品、金属和塑料、消费品、电子商务/零售和医疗保健等多个市场领域。客户简介客户需求全业务流程自动化在内部启用服务中台,期望实现全业务流程自动化,并针对各部门的业务特性进行差异化处理。数据一致性将各部门的系统统一与中台打通,保证数据一致性。中台也需要包含大数据处理和分析的模块,并将中台的数据作为BI功能的数据源。知名德国机器人企业ServiceGo实现了用应用来定义系统内不同的工作场景,添加现场服务管理、备件管理、服务商管理、项目管理等多个应用,同一平台统一管理。涵盖从上门维修、退换货、投诉客户、送修到有偿维修各个方面,同时完善了现场服务工作的特殊应对机制。统一平台统一平台现场服务管理现场服务管理服务商管理服务商管理备件管理备件管理项目管理项目管理包含出库单管理、入库单管理、出入库流水、备件采购、返还管理等,能够满足仓储备件管理基本功能。建立起清晰的管理结构,分级管理各地服务商,各服务商下设服务站,以服务站为单位管理工程师及本站的服务单。高效项目管理,帮助企业增大市场占有份额、增加公司业务量,调动员工积极性。InsightInsight报表报表通过Insight报表的自定义能力,实时监控线索转化率、团队分配情况、运营效率、机构状态等指标,帮助团队及时发现问题、更新运营策略,持续提高效率、增加营收。沃丰科技解决方案物流机器人企业某物流机器人企业是全球领先的视觉导航移动机器人(AMR)企业,为制造业和仓储业提供了机器人搬运和拣选解决方案。作为第四代移动机器人引领者,该企业AMR凭借柔性、视觉、跨场景、全流程的强大优势,持续帮助企业降本增效。2020年,该企业入选北京第一批“专精特新”中小企业名单,2021年荣获国家级专精特新“小巨人”企业称号。客户简介客户需求作为一家随需而动的智能制造型企业,该企业需要根据客户的需求不断进行流程的优化,因此新的系统必须足够灵活,以适应业务的发展。活度产品灵该企业对于客户录入、商机推进、合同签署等多种场景规定了不同的审批制度。要求新系统审批配置需要适应跨部门、复杂的流转。审批流自定义需要系统有合理抽象的通用化配置能力,同时便于支撑不同业务的差异化需求,且需要系统内置销售场景、服务场景等标准化解决方案。理中台能力客户关系管企业希望使用一套从数据获取、到统计分析、到输出报表的强大的BI报表体系,实时监控销售进展、客户维护、运营情况等,从而针对性的调整销售运营策略。能力数据分析物流机器人企业1、L2C解决方案从线索到订单,自动化的商机转化流程,助力企业赢得更多交易。利用智能评分模型快速识别有价值的商机,从线索、客户、商机到合同订单,统一营销、销售和服务数据,实现数据、人员和流程的高效管理与协作。3、数据沉淀与分析商机推进全阶段文档和数据沉淀、各阶段协同处理,打破数据孤岛。和财务、产品、研发、项目等部门打通数据和账号,协同管理商机推进全过程。2、自定义能力ServiceGo系统高度的自定义能力支持业务流程自定义、功能模块自定义、界面自定义、权限体系自定义,能够满足该企业通用化配置和自定义审批流的需求,适应不断变化的销售业务场景。4、系统高扩展性低代码PaaS平台,ServiceGo系统具备可持续扩展的能力,能够适应不断增长和变化的业务模块,及时调整和搭建,具备很强的灵活性。Leads线索客户商机售前支持投标报价合同订单发货交付回款管理应收管理发票管理合同创建合同审批合同执行资源管理任务管理质量管理物流管理客户跟进销售步骤销售动作线索跟进线索维护线索转化ERPOAWMSCash回款技术支持方案咨询资源分配CPQ报价审批管理价格查询语音机器人电话广告-网站公众号微信展会活动运营部实施部销售部市场部沃丰科技解决方案软银机器人软银机器人(上海)有限公司,是一家集人工智能机器人技术开发与产品销售为一体的公司。软银机器人在巴黎、东京、旧金山、波士顿和上海拥有500多名员工,为各行各业传递机器人解决方案。软银机器人的产品及服务已导入零售业、旅游业、健康陪护、政务服务、金融及教育等各行各业当中。客户简介客户需求业务与用户的交互受限业务与用户的交互受限原业务系统不具备呼叫中心能力,Case能力,只能通过传统等邮箱获得用户反馈。集成呼叫中心能力受有系统限制,针对性等开发代价过高。业务拓展受系统限制业务拓展受系统限制原有Salesforce整体运维成本高,同时是由国外的外包商运维,后端的管理都是代码级,对软银业务的理解较差。运营成本高运营成本高只能在系统平台内做一些更改,无法做到多系统联动,多业务协同,如合同工管理,知识库管理等。整合难整合难软银机器人01ServiceGo建设一体化运营平台,业务模块包含CRM、售后股务、客户关系管理、产品管理、知识系统建设等。02呼叫中心平台整合,构建电话服务休系,将CRM售后服务,客户关系进行串联,所有的信息进行分类汇总。04数据分析系统建设,根据业务需要,使用我司银供的BI平台进行无缝对接,构建用户的数据分析系統,趋势预測系统。03售后服务流程构建和优化,参照原有使用Salesforce的体验,进行优化,将原有繁琐的流程进行精简,重新建设业务控制,流程市批,以及与用户的交互体验。05整合现有的产品系統,将全国布局的营销售后仓储 产品进行一体化管理,同时对产品的零配件进行流程优化,更加的适应本士化运营。沃丰科技解决方案售后服务营销管理物资管理合同管理一体化运营管理平台一体化运营管理平台物灵科技物灵科技是面向全球的人工智能科技公司。物灵科技致力发展成为国内外面向消费者市场及家庭场景的人工智能产品领域的一线品牌。物灵科技(Ling Techno logy)基于底层计算机视觉、自然语言交互等人工智能技术。于2016年率先开创了“无屏实现触控智能机器人技术,创造了阅读教育机器人Luka。客户简介客户需求销售部门和客户部门员工多用个人微信与客户进行沟通。个微没有活码功能,添加好友效率低下,营销群发的场景下也存在被封号的风险。个人微信转企业个人微信转企业微信微信客服部门面对大量客户售后咨询的问题,多有回复不够及时,甚至遗漏的现象。需要有工具提高客服部门的工作效率。售后回复时效亟售后回复时效亟待提高待提高服务人员与客户的沟通主要集中在售后场景,随着产品种类增多,向老客户推荐新产品的需求日益增加。需要有好的管理工具,实现营销和服务一体化。售后营销一体化售后营销一体化应用场景应用场景物灵科技客户运营管理客户运营管理工作质效把控工作质效把控售后营销一体化售后营销一体化微丰SCRM平台,可实现个微转企微统一管理的问题。通过发送活码高效添加客户。在与客户对话的窗口,通过侧边栏,可快速查找过往沟通信息,常见问题回复等等,提高服务效率。员工所有跟客户的会话都留存下来,通过会话分析,可有效把控员工的工作量和工作质量。同时,敏感行为实时监控可有效管理员工与客户的沟通服务质量。售后服务过程中,可通过素材管理模块,快速将新产品信息,营销材料等一键发送给客户。通过产品管理模块,可迅速查询公司所有产品的基本信息,报价等。沃丰科技解决方案客服部门在处理客户售后问题的同时,也可对沉淀到公司私域流量池的企微客户进行新购营销推广。通过营销素材管理模块,SOP营销计划模块等,让新品推广更加高效快捷,也大大增加了老客户新购的成功率,新品销售收入提升显著。通过活码、欢迎语、知识库、素材库等模块,让客户服务工作更加高效便捷。员工跟客户的所有对话都留存下来,通过会话分析模块,对客户人员的工作质效进行统计分析,让客户部门的绩效管理更加透明有效,大大提升了客户的感知体验。售后营销一体化,新品销售收入提升售后营销一体化,新品销售收入提升客户服务更加高效,提升客户体验客户服务更加高效,提升客户体验应用效果低代码PaaS平台,可视化灵活配置,支持功能/模块、界面、业务流程、审批流程、权限体系等方面的自定义设置,匹配多种业务模式,满足企业个性化管理需求。高度自定义高度自定义基于数据分析的业务洞察和知识沉淀Insight数据分析工具,预置丰富的数据分析可视化报表,以数据指导业务决策。数据为中心数据为中心ServiceGo平台支持多个用户同时访问,协作应用的数据和服务可供位于不同位置的多个用户共享,有助于团队在活动中密切合作。高度协作高度协作ServiceGo提供标准的API接口和触发器,实现与ERP/OA/WMS等系统对接,数据自动同步、统一管理,打破数据孤岛。多系统集成多系统集成优势与优势与特点特点PART FIVE机器人服务趋势与展望数字化转型不是一蹴而就的,而选择一个好的系统提供商可以事半功倍 系统规划 鉴于企业数字化转型是一项系统而复杂的工程,需要高度结合企业的宝贵经验和数字化专业顾问团队,实现高效完整的解决方案设计。企业方需要以高层管理团队为代表,充分发挥其成熟的经 验和对行业、对公司的理解,在方案的实际价值评估、可行性和实施等方面发挥优势。顾问发挥数字化转型知识和案例经验的优势,通过指导和辅导,协助企业完成专业、高效的数字化改造解决方案,并监督实施过程,以达到预期的积极效果。建立数字意识,制造紧张气氛 无论是个人还是组织,改变都需要不断地努力和长期的考验,而改变的第一步从认知开始。一个组织之中具有组织变革积极意识的群体往往不到两层,剩下的大部分成员会局限于过去成功经验和思维惯性的束缚,过于关心和依赖过去的习惯和经验,对变革漠不关心甚至抗拒变革。建立数字化试点团队 在统一数字化转型认识后,必须统筹考虑,第一步是数字化试点创建试验模型,收集经验,以利于后续经验推广和大规模改革实施,核心是选择试点团队的负责人。团队领导者首先要有强烈的变革意愿,最好来自业务部门,能直接接触一线市场环境并对变化敏感,并可参考从销售和渠道部门挑选一些高层次的员工。及时调整和规划 数字化转型的推广一段时间后,需及时复盘。复盘一方面可以及时总结成功的经验和规律,另一方面,可以及时完善下一步的工作规划,包括哪些不恰当的行为需要及时制止,解决哪些高价值的问题并持续改进,并坚持巩固哪些现有的正确优势。经验分享及推广应用 分阶段的数字化转型实践将带来很多成功和失败的经验案例,通过及时回顾和讨论分享成功经验,开展更大范围的推广。沃丰科技 作为中国人工智能与营销服务解决方案提供商,沃丰科技拥有 Udesk、GaussMind、ServiceGo、微丰等完整的产品矩阵,将人工智能技术应用到企业的营销获客、销售管理、客户服务及企业内部共享服务等各个场景,为消费品、制造业、生命科学、汽车、央国 企、数字政府、金融等多个行业提供定制化解决方案,全面助力企业实现数字化转型,得到众多世界 500 强、中国 500 强客户的信赖。免责声明 本文档可能含有预测信息,包括但不限于有关未来的财务、运营、产品系列、新技 术等信息。由于实践中存在很多不确定因素,可能导致实际结果与预测信息有很大的差别。因此,本文档信息仅供参考,不构成任何要约或承诺,沃丰科技不对您在本文档基 础上做出的任何行为承担责任。沃丰科技可能不经通知修改上述信息,恕不另行通知。版权所有 北京沃丰时代数据科技有限公司所有 保留一切权力 非经北京沃丰时代数据科技有限公司书面同意,任何单位和个人不得擅自摘抄、复 制本手册内容的部分或全部,并不得以任何形式传播。关于沃丰科技
34人已浏览
2023-03-29 38页
5星级
艾瑞咨询:2023年中国“专精特新”企业发展研究报告-医疗篇(61页).pdf
中国“专精特新”企业发展研究报告-医疗篇2023.3 iResearch Inc.22023.3 iResearch I摘要来源:艾瑞咨询研究院自主研究绘制。“专精特新”企业是指具有“专业化、精细化、特色化、新颖化”特征的中小企业,是我国近十年来重点发展与扶持的中小型企业。我国中小企业规模庞大效益明显,连接千行百业,联系千家万户,成为推动创新、促进就业、改善民生的重要力量。在当下国际环境日趋复杂的背景下,培育“专精特新”企业成为提升中国在全球产业链地位的重要路径。概念阐述截至目前,工信部公示了9279家专精特新“小巨人”企业,已接近达成2025年培育1万家专精特新“小巨人”企业的目标,其中医疗企业 共514家,这些企业有如下特点:产业分布:集中分布于医药研发与生产、医疗器械两大领域,占总数超过90%;上市情况:上市企业主要分布在科创板和创业板,主板上市公司数量相对较少;区域特征:多分布于资源丰富的东部沿海地区,前四省市数量占整体超三分之一;企业特点:凭借差异化优势领跑细分赛道,具有小而强的特点。培育情况政府培育措施上,自“专精特新”培育体系提出以来,政府从顶层目标、资金奖励、税收优惠、资本支持、产业链联动等多方面为企业发展提供支持。区域培育效果上,上海城市总体引领,深圳区域定向培育,长春医药园区建设推动,市、区、园区三级生态培育成效显著,助力中小企业发展。培育生态投资侧“专精特新”医疗培育侧重点方面,短期内制造业的国产替代将持续发力,同时科技创新将长期赋能医疗服务行业发展。高价值赛道方面,结合专精特新“小巨人”医疗企业特点,医药研发与生产领域创新药、CXO市场发展的确定性较高,医疗器械领域上国产替代仍将是一段时间以内的主旋律,医疗服务中互联网医疗、医疗信息化、消费医疗领域值得市场关注。赛道展望企业侧发展路径上,承借政府系统化专精特新培育的东风,广大中小企业应顺势而上,趁势而起。在明确专、精、特、新发展目标的基础上,贴合国家培育方向,坚定自身市场战略,持续加强创新能力,增强数字化转型内力,以求实现“强链补链”,促进企业高效发展。发展路径3观局:“专精特新”概述1入局:专精特新之“小巨人”医疗企业2稳局:政府侧“专精特新”培育生态3破局:企业侧“专精特新”发展路径4拓局:投资侧“专精特新”赛道展望542023.3 iResearch I工信部指出我国将建立中小企业梯度培育体系,聚焦创新型中小企业、“专精特新”中小企业、专精特新“小巨人”企业,分层打造“专精特新”企业群体,并推动“小巨人”企业加快向单项冠军、领航企业发展。本次研究聚焦于医疗领域“专精特新”中小企业及专精特新“小巨人”企业,以期从局外到局内全面探索医疗领域政府侧、企业侧及投资侧发展路径。报告研究范畴界定从医疗领域专精特新“小巨人”企业培育情况探析政府侧、企业侧及投资侧发展路径来源:艾瑞咨询研究院自主研究及绘制。我国中小企业梯度培育体系目标100万家,已培育11.7万多家创新型中小企业专精特新“小巨人”企业制造业单项冠军目标10万家,已培育5万多家目标1万家,已培育9千余家领航企业目标1千家,已培育近1千家“专精特新”中小企业一大批领航企业本次研究聚焦于医疗领域“专精特新”中小企业及专精特新“小巨人”企业,探究政府侧、企业侧及投资侧发展路径。52023.3 iResearch I“专精特新”内涵阐述“专、精、特、新”四字诀助推中小企业向前发展“专精特新”企业是指具有“专业化、精细化、特色化、新颖化”特征的中小企业,工信部对“专、精、特、新”四字诀有明确的定义,这也是我国近十年来重点扶持与发展的中小型企业。这当中,专精特新“小巨人”企业是指位于产业基础核心领域和产业链关键环节,创新能力突出、掌握核心技术、细分市场占有率高、质量效益好的中小企业,是优质中小企业的核心力量,其评价标准则包括“专、精、特、新、链、品”六大要素。来源:艾瑞咨询研究院自主研究及绘制。“专精特新”内涵阐述与发展特点专业化专企业坚持专业化发展战略,从事特定细分市场时间达到2年以上,专注核心业务,主营业务收入占本企业营业收入的70%以上,具有较高专业化生产、服务和协作配套能力,能为大企业、大项目提供关键零部件、关键元器件、配套产品和配套服务。开展技术创新、管理创新和商业模式创新,适应或创造消费新需求,拥有符合“新技术、新产业、新业态、新模式”四新经济发展特征的产品或服务,具有较高的信息化、智能化应用水平,通过行业的交叉融合提供新的产品或服务,拥有近2年内新授权的发明专利或独特、独有的工艺、配方等专有技术。近2年新授权的与主导产品相关的知识产权须满足以下所列任意一条:发明专利1项以上;实用新型专利、外观设计专利2项以上;软件著作权6项以上;参与制(修)定国家标准、主持(参与)制(修)订行业标准1项以上。新颖化新精精细化企业建立精细高效的管理制度和流程,采用适合企业的现代管理方式,如5S管理、KPI考核、卓越绩效管理、企业资源计划ERP、供应链管理系统SCM、客户管理系统CRM等,取得质量管理体系认证,开展精细化生产、精细化管理、精细化服务,管理效益突出、降本增效显著,产品品牌和服务美誉度高、性价比好、品质精良,在细分市场具有一定的比较优势。特色化特企业利用特色资源,弘扬传统技艺和地域文化,采用独特工艺、技术、配方或原料,研制生产具有地方或企业特色的产品,具备区别于其他同类产品的独立属性,获得国家授权的发明专利1项以上(含)或实用新型专利技术2项以上(含)。定义特点产品专有性长期主义性管理高效性产品精细性工艺独特性产品特色性技术领先性创新驱动性62023.3 iResearch I新冠疫情的不确定性,84.3%美国等国打压中国企业,41.9%全球供应链不稳定,20.7%新变局下企业的管理和创新能力凾待提升,18.4%数字化转型真正落实困难,12.9%其他,.2022年中国企业需应对的挑战调查“专精特新”发展背景国内外环境复杂多样,多方因素限制我国中小企业发展当前,全球产业竞争格局正在发生重大调整。受全球经济下行等因素的影响,国际贸易保护主义抬头、全球贸易摩擦加剧。国务院发展研究中心2022年中国企业经营者问卷跟踪调查报告指出,在2022年对企业的调查中发现,中小企业普遍认为新冠疫情的不确定性与美国等国打压中国企业是当时情况下最难应对的挑战。在中美贸易摩擦加重,中国崛起成为新兴的超级大国已势不可挡的情形之下,美国收紧了针对中国的贸易政策,采取一系列手段进行出口管制与供应链打击。以上国内外环境因素大大限制了中小企业的成长,这使得中国专精特新化发展成为经济向前的重要基础与路径。来源:国务院发展研究中心2022年中国企业经营者问卷跟踪调查报告,N=1391,截至2022年11月19日,艾瑞咨询研究院自主研究及绘制。中国“专精特新”发展的国内外环境因素反倾销调查:进口国依法对造成进口国产业损害的倾销行为采取征收反倾销税等调查。拒绝人员清单:对特定实体或个人颁布禁止令,禁止参与特定活动。337调查:调查对象为进口产品侵犯美国知识产权的行为以及进口贸易中的其他不公平竞争。301调查:始于2017年,对中国货物加征关税,税率从7.5%至25%不等。1中国企业面对国内外环境新变化所面临的的挑战2美国特殊贸易手段时间反倾销调查数量2012-2016年2017-2021年4544反补贴调查数量34302012-2021年美国对中国发起反倾销、反补贴调查数量72023.3 iResearch I“专精特新”发展背景中小企业规模庞大效益明显,连接千行百业,联系千家万户在当前中国的经济形势下,中小企业已经逐渐成为国民经济与社会发展的主力军。规模方面,截至2021年末,我国企业数量达到4842万户,其中中小企业数量4800万户,占企业总数的99%以上,是市场中主体数量最大、最具活力的企业群体。效益方面,中小企业的不断发展产生了良好的经济与社会效益。据工信部统计,中国中小企业具有“五六七八”的典型特征,即贡献了全国50%以上的税收,60%以上的GDP,70%以上的技术创新成果以及80%以上的劳动力就业,成为现代化产业体系的重要组成部分。因此,中小企业的良好发展关乎千家万户,连接千行百业,是保障经济良性发展与维持就业韧性的重要立足点。来源:第四次经济普查、工信部,艾瑞咨询研究院自主研究及绘制。中国中小企业的规模与效益截至2021年末,全国企业数量达4842万户中小企业4800万户,占全国企业数量99%以上规模以上工业中小企业40万户,较2012年增长23.5PP%以上的税收贡献60%以上的GDP70p%以上的技术创新80%以上的城站劳动就业80%中小企业规模庞大中小企业效益明显“五六七八”中国中小企业具有“五六七八”的典型特征,要坚持聚焦主业、打造优势、勇于创新,走“专精特新”发展之路。82023.3 iResearch I93.293.1939393.192.892.892.782.0 85.586.887.0 87.587.286.786.488.788.488.288.12018Q12018Q32019Q12019Q32020Q12020Q32021Q12021Q32022Q12022Q3中小企业发展指数(SMEDI)“专精特新”发展背景中小企业发展指数受疫情影响亟需复苏,企业经营压力大中小企业是我国经济发展的重要主体,但因其体量小、科技薄弱等特点,往往处于产业链的弱势地位,受2020-2022年新冠疫情黑天鹅事件的影响,叠加宏观经济下行、去杠杆、去产能等多重因素,中小企业的经营压力进一步加大。根据中国中小企业协会发布的中小企业发展发展指数(SMEDI),2020年疫情以来,中小企业发展指数总体下行,2020年第一季度跌至最低点82.0。截至2022年第三季度,中小企业发展指数仍未恢复至2020年以前的水平,恢复基础有待稳固,在这一情况下,专精特新培育生态无疑成为广大中小企业保增长、促发展的一剂良药。来源:中国中小企业协会,艾瑞咨询研究院自主研究及绘制。2018年Q1-2022年Q4中国中小企业发展指数运行图受2020-2022年新冠肺炎疫情影响,2020年第一季度中小企业发展指数(SMEDI)大幅下跌,其中2月SMEDI为76.4,较上月下降16.2点,创2010年二季度开启调查以来的最低纪录。92023.3 iResearch I“专精特新”发展背景中小企业成为促创新、稳就业、惠民生的重要力量随着中小企业的不断发展壮大,其逐渐成为推动创新、促进就业、改善民生的重要力量。创新方面,在制造业由三低一弱走向三高一强的进程中,技术创新是发展的关键力量。工信部数据显示,占全国企业数量99%的中小企业提供了大约65%的发明专利、75%的企业创新和80%的新产品研发,中小企业作为产业链的重要参与者,对市场需求反应更为灵敏,能够对应需求进行产业与技术创新。就业与民生方面,民营经济是居民就业与收入增长的重要基础,也是稳定居民与社会经济预期的基础。中小企业民营经济稳定发展,就业与民生随之稳定进步。因此,中小企业在中国产业经济发展中的地位与贡献不容小觑,中小企业的向前发展是现阶段产业发展的重要议题。来源:公开资料、工信部,艾瑞咨询研究院自主研究及绘制。中国中小企业对创新、就业与民生的重要贡献开展研发活动,贡献创新成果三低一弱 低附加值 低技术含量 低质量 弱品牌推动创新促进就业改善民生三高一强 高附加值 高技术含量 高质量 强品牌65u%发明专利企业创新新产品研发提高收入水平城镇私营单位就业人员年均工资由2010年20759元上升到2021年62884元。优化收入结构通过创业提升居民经营性收入;通过员工持股等带动居民财产性收入增加。扩大就业容量,提升就业质量吸纳城镇就业人员比例从1990 年 的 4.6%上 升 至2022年的80%以上。2021届本科毕业生在300人以下规模的中小微企业就业的比例为46%,高职为63%。102023.3 iResearch I自2011年“专精特新”一词提出以来,国家就开始了“专精特新”企业培育的长期规划,十数年间政策频发,尤其2021年之后,“专精特新”一词开始频繁出现在政府公开文件和讲话中,730政治局会议上专门提出要“开展补链强链专项行动,加快解决卡脖子难题,发展专精特新中小企业”。与此同时,北京证券交易所的设立从资本角度进一步加大了对专精特新中小企业的扶持力度。“专精特新”政策沿革十数年间政策不断加码,助力创新型中小企业乘风而起来源:艾瑞咨询研究院自主研究及绘制。“专精特新”中小企业发展相关政策梳理日期政策名称发布方相关内容2011年9月“十二五”中小企业成长规划工信部将专精特新发展方向作为中小企业转型升级的重要途径,形成一批“小而优”、“小而强”的企业,推动小企业和大企业协调发展。2013年7月工业和信息化部关于促进中小企业“专精特新”发展的指导意见工信部提出促进“专精特新”中小企业发展的总体思路、重点任务及推进措施。2018年11月关于开展专精特新“小巨人”企业培育工作的通知工信部提出在各省级中小企业主管部门认定的“专精特新”中小企业基础上,培育一批专精特新“小巨人”企业。2019年4月关于促进中小企业健康发展的指导意见国务院特别提出引导中小企业专精特新发展,在核心基础零部件、关键基础材料、先进基础工艺和产业技术基础等领域,培育一批主营业务突出、竞争力强、成长性好的专精特新“小巨人”企业。2021年1月关于支持“专精特新”中小企业高质量发展的通知财政部、工信部提出中央财政安排100亿以上奖补资金,分三批支持1000余家国家级专精特新“小巨人”企业加大创新投入。2021年7月7.30 政治局会议中国政府网提出开展“补链强链”专项行动,特别提出要扶持“专精特新”中小企业。2021年9月证监会就北京证券交易所有关基础制度安排向社会公开征求意见证监会贯彻新发展理念,突出专精特新中小企业特点,明确简便、包容、精准的发行条件,建立多元、灵活、充分博弈的承销机制,聚焦服务实体经济,大力支持科技创新。2022年6月优质中小企业梯度培育管理暂行办法工信部明确创新型中小企业、“专精特新”中小企业、专精特新“小巨人”企业的评价或认定标准。112023.3 iResearch I“专精特新”企业培育历程从“概念”到“系统化培育”,政策助力实现多维度扶持“专精特新”这一概念最早于2011年工信部“十二五”中小企业成长规划中提出,2011年至2016年处于专精特新政策战略布局期,相应培育政策被不断提出。随着顶层设计的持续落地,2019年工信部公布了第一批248家专精特新“小巨人”企业名单,“专精特新”企业培育持续推进。2021年,国务院提出中央财政累计安排100亿元以上奖补资金扶持专精特新“小巨人”企业,专精特新领域政策井喷式爆发,进入高速成长期,政府对于培育中小企业的方法论已渐趋成熟。来源:艾瑞咨询研究院自主研究及绘制。“专精特新”企业培育发展历程201120172021阶段特征相关事件孕育孵化期持续推进期加速发展期战略生态布局提出“专精特新”概念,明确专精特新发展思路细化培育措施逐步推进“专精特新”企业培育并细化培育方式政策补贴加码加速“专精特新”企业培育工作,明确培育体系,加大培育力度。2011年,工信部首次提出了“专精特新”这一概念;2016年提出在“专精特新”企业基础之上,再培养一批专精特新“小巨人”企业。2019年,工信部公示第一批248家专精特新“小巨人”名单;2020年,工信部公示第二批1744家专精特新“小巨人”名单。2021年中央财政安排100 亿以上奖补资金,支持专精特新“小巨人”企业发展;2021年工信部公示第三批2930家专精特新“小巨人”名单;2021年北交所开市,为“专精特新”中小企业提供发行支持;2022年工信部公示第四批4357家专精特新“小巨人”名单,第一批复核通过155家。122023.3 iResearch I“专精特新”企业培育价值良好应对国际复杂经济形势,自主实现内部供需良性循环在国际经济增速放缓的大背景下,培育“专精特新”企业,向内发力,进一步提升中小企业生产效率十分必要。首先,通过中小企业专精特新化培育,能够帮助中国经济从宏观视角转向微观视角,更加重视激发产业链微观主体活力,重点培育专精特新“小巨人”企业,提升产业链韧性;其次,国家辅以精准滴灌的帮扶政策,将会有效扩大融资供给、提振市场信心、稳定中小企业预期的良好效果。最后,在充分发挥“专精特新”企业优势补链强链的基础上,以新基建为契机,将推进存量中小企业走专精特新化发展之路,促进产业链整链提升,进而实现提高生产率,推动产业整体向中高端迈进。来源:艾瑞咨询研究院自主研究及绘制。“专精特新”企业培育对于内部供需循环的核心价值核心价值提振信心 通过“专精特新”企业培育,能够将发展视角从宏观转向微观,充分激发产业链之中微观主体的活力,重点培育专精特新“小巨人”企业,提升产业链韧性。通过政府对“专精特新”中小企业的积极培育与精准帮扶,能够有效扩大融资供给,帮助提升服务能力,从而提升市场当中中小企业的发展信心。发挥中小企业作用,通过“专”与“精”强化企业优势,“特”与“新”补足企业短板,从而达到强链补链的效果,结合新基建基础,实现产业链的整体提升。现阶段全球宏观环境瞬息万变,经济下行形势明显,产业竞争格局不断加剧。在此背景下,中国想要稳定国际地位,获得产业链竞争优势,必须不断向内发力,进一步提升生产效率,通过高质量供给引领创新需求,实现供需的良性循环。13观局:“专精特新”概述1入局:专精特新之“小巨人”医疗企业2稳局:政府侧“专精特新”培育生态3破局:企业侧“专精特新”发展路径4拓局:投资侧“专精特新”赛道展望5142023.3 iResearch I“专精特新”与医疗产业契合度专、精、特、新四维关注度与医疗产业细分领域高度契合“专精特新”企业是我国近十年来出台的扶持发展中小型企业发展政策中,被国家认定为具备专、精、特、新四个企业特色之一的中小型企业。这当中,专、精、特、新分别对应企业的专业化、精细化、特色化和创新化。根据工信部对于专精特新的定义和医疗行业细分领域的标签特征,艾瑞将医疗领域的化学制药、生物制药、中药、医疗服务、医疗器械等进行了“专精特新”的匹配。专、精、特、新四字诀与医疗细分产业高度契合,成为广大中小企业的一大发展方向。本章报告将围绕专精特新“小巨人”医疗企业具体培育情况展开数据分析,并探讨相关行业的发展情况。注释:专精特新“小巨人”企业数量按照工信部初次公示名单进行统计。来源:艾瑞咨询研究院自主研究及绘制。“专精特新”与医疗产业契合度四批共9279家企业专注于医疗生产制造业务专注于医疗器械供应业务专注于医疗相关配套服务医疗相关企业514家医疗领域5.5%专精特新 专业 长期 积累 精细 工艺 优化 特色 差异 定制 创新 研发 前沿软件与信息技术服务化学制药生物制药创新药研发中药医疗服务高端医疗器械专用设备制造医疗科技生物制品专精特新“小巨人”医疗相关企业152023.3 iResearch I专精特新“小巨人”医疗企业总体特征深耕细分赛道,中小企业凭借差异化竞争优势脱颖而出在经济发展“新常态”背景下,我国致力于通过创新驱动、强链补链实现高质量发展、推动共同富裕。在当下国际环境日趋复杂的背景下,提升科技竞争力、解决“卡脖子”问题成为必然选项。培育“专精特新”企业成为提升中国在全球产业链地位的重要路径,有望推进我国“科技产业金融”的高水平循环,为我国优质中小企业发展带来更多助力。工信部共分四批次公示了9279家专精特新“小巨人”企业,其中医疗相关企业占比5.5%。总体来看,行业分布上“小巨人”企业多分布在医药研发与生产、医疗器械两大领域;上市情况上,“小巨人”上市企业多集中在创业板与科创板,市值大部分小于100亿元;区域分布上,“小巨人”医疗企业多分布在东部技术、资源、人才密集省市;企业特点上,“小巨人”医疗企业大多凭借差异化竞争优势成为细分领域龙头,具有“小而强”的企业特征。注释:专精特新“小巨人”企业数量按照工信部初次公示名单进行统计。来源:艾瑞咨询研究院自主研究及绘制。专精特新“小巨人”医疗企业总体特征行业分布:已公示的专精特新“小巨人”医疗企业集中分布于医药研发与生产、医疗器械两大领域,主要从事药械研发生产,占公示专精特新“小巨人”医疗企业总数超过90%,这进一步体现了专精特新助力中国实现从“制造大国”向“制造强国”的转变。上市情况:在“小巨人”医疗企业当中,上市企业共119家,占比仅23.2%,已上市企业主要集中在创业板、科创板,大部分市值小于100 亿元;这符合“中小企业-专精特新-专精特新小巨人-单项冠军”的发展路径。区域分布:工业产业较为发达的东部沿海地区是“小巨人”的聚集高地,数量TOP5省市为北京、上海、浙江、广东以及江苏,占整体医疗企业数量超三分之一;这体现医疗健康行业的政策依赖强、技术壁垒高以及人才需求大的特点。企业特点:大部分专精特新“小巨人”医疗企业为民营企业,具有小而强的特点,由于本身业务具有差异化的独特优势,成为某个细分领域的龙头,科技含量较高,创新能力较强。162023.3 iResearch I专精特新“小巨人”医疗企业,514专精特新“小巨人”非医疗企业,8765专精特新“小巨人”医疗企业(个)专精特新“小巨人”非医疗企业(个)专精特新“小巨人”医疗企业画像专精特新“小巨人”医疗企业514家,整体占比不高自2019年以来,工信部共分四批次公示了9279家专精特新“小巨人”企业,已 接 近达成2025年培育1万家专精特新“小巨人”企业的目标。艾瑞对一到四批专精特新“小巨人”企业进行梳理和统计,将9279家专精特新“小巨人”企业大致分为医疗企业与非医疗企业两大类。根据统计,一到四批专精特新“小巨人”企业中共有514家医疗企业,占比为5.5%。分批次来看,第二批中“小巨人”医疗企业数量达到最高,共199家,占第二批总数量的比重为11.4%;自第三批开始,医疗企业的入选占整体数量的比重有所下降。注释:专精特新“小巨人”企业数量按照工信部初次公示名单进行统计。来源:工信部,艾瑞咨询研究院自主研究及绘制。专精特新“小巨人”企业数量情况2519911517524817442930435710.1.4%3.9%4.0%第一批第二批第三批第四批医疗企业数量(个)专精特新“小巨人”企业总数(个)医疗企业占比(%)专精特新“小巨人”分批次公示数量专精特新”小巨人“企业9279家”小巨人“医疗企业占比5.52023.3 iResearch I专精特新“小巨人”医疗企业画像“小巨人”医疗企业主要为非上市公司,成长空间较大艾瑞将专精特新“小巨人”企业中的医疗企业按照一至四批次进行统计,以上市和非上市企业进行区分。总体来说,在已纳入专精特新“小巨人”名单中的514家医疗企业当中,119家为上市公司,395家为非上市公司,“小巨人”上市医疗企业占比23.2%。分批次来看,从第一批到第四批专精特新“小巨人”企业当中,各批次被纳入名单的非上市医疗企业数量明显高于上市企业,第二批上市企业数量最多。从所属板块来看,医疗上市企业主要分布在科创板和创业板,主板上市公司数量相对较少,依然存在较大的成长空间,这与专精特新企业的创新内核相契合。来源:工信部,艾瑞咨询研究院自主研究及绘制。专精特新“小巨人”医疗企业总体上市情况专精特新“小巨人”医疗企业分批次上市情况上市医疗企业,119非上市医疗企业,395上市医疗企业(个)非上市医疗企业(个)专精特新”小巨人“医疗企业514家”小巨人“上市医疗企业占比23.2%批次上市企业非上市企业合计第一批101525第二批51148199第三批2788115第四批31144175合计119395514182023.3 iResearch I专精特新“小巨人”医疗企业画像沿海地区凭借其明显产业优势吸引最多“小巨人”医疗企业近年来,在医疗健康市场需求飞速增长的推动作用下,我国医疗健康企业不断成长为优秀的专精特新“小巨人”企业。区域分布方面,拥有30家以上的专精特新“小巨人”医疗企业的省市主要集中在沿海经济发达地区,分别为北京、山东、江苏、上海、浙江和广东,企业分布呈现东强西弱的阶梯特征,这也展现出东部地区作为我国经济持续增长的核心区,在“专精特新”医疗企业培育方面的领先优势与雄厚实力。整体来看,伴随着我国医疗健康产业的发展,京津冀、长三角、珠三角已成为我国重要的医疗健康产业聚集区。来源:工信部,艾瑞咨询研究院自主研究及绘制。专精特新“小巨人”医疗企业区域分布情况0-10家11-20家21-30家31-40家40家以上.南海诸岛.1545191464913771981113227115东部地区中部地区西部地区东北地区第一批(个)第二批(个)第三批(个)第四批(个)192023.3 iResearch I专精特新“小巨人”医疗企业画像前四省市“小巨人”医疗企业占整体数量超三分之一随着我国经济社会的不断发展和医疗相关产业政策的逐步引领,医疗健康领域“小巨人”企业数量不断增加,截至工信部公布的第四批专精特新“小巨人”企业名录,根据艾瑞统计,国内514家医疗相关的“小巨人”企业在省市分布方面有明显特征,发达省市企业数量较多,其中北京、上海、浙江、广东四地分别以57、49、39、39家排名前四,共计184家,占整体“小巨人”医疗企业数量超过三分之一,这与医疗健康行业的高技术属性、对政策支持的依赖性以及对人才的高需求性等特点直接相关。来源:工信部,艾瑞咨询研究院自主研究及绘制。专精特新“小巨人”医疗企业省市分布情况 发达省市专精特新“小巨人”企业分布最多;前四名地区共计184家,占总数超三分之一。574939 393835292118 181716151211 1110 109887777543220专精特新“小巨人”医疗企业数量(个)202023.3 iResearch I专精特新“小巨人”医疗企业画像医药制造是重点发展方向,医疗服务行业增长空间巨大根据中国“制造强国”的发展需求,我国专精特新“小巨人”医疗行业重点培育方向主要集中在制造业领域。从行业领域来看,按照艾瑞划分的医药研发与生产、医疗器械以及医疗服务三大行业,已公示的专精特新“小巨人”医疗企业集中分布于医药研发与生产与医疗器械两大领域,占公示专精特新“小巨人”医疗企业总数超过90%,这体现了现阶段“专精特新”助力制造业实现制造强国的目标愿景。分批次来看,专精特新“小巨人”医药研发与生产企业占比呈现明显下降,从第一批占比60.0%下降至第四批的40.6%;医疗器械企业凭借疫情下体外诊断需求的增加,呈现大幅增长趋势。同时,医疗服务目前入选企业占比在10%以内,可以看出中国医疗服务市场仍待开发,未来增长空间巨大。来源:工信部,艾瑞咨询研究院自主研究及绘制。医药研发与生产,50.2%医疗器械,44.7%医疗服务,5.1%“小巨人”医疗企业行业领域分布情况医药研发与生产医疗器械医疗服务60.0g.33.0.66.01.7X.3R.0%4.0%1.0%8.7%7.4%第一批第二批第三批第四批各批次“小巨人”医疗企业行业领域占比情况医药研发与生产(%)医疗器械(%)医疗服务(%)212023.3 iResearch I专精特新“小巨人”医疗企业图谱注释:按照企业典型产品领域进行划分,仅展示部分企业,图谱中的企业logo顺序及大小并无实际意义。来源:艾瑞咨询研究院自主研究及绘制。医疗器械医药研发与生产中药化学制药生物制药医疗设备医疗耗材体外诊断细分科室骨科康复其他医疗服务医药流通医疗信息化2023年中国专精特新“小巨人”医疗企业图谱心血管辅助诊疗医学检验22专精特新“小巨人”医疗细分领域医疗服务医药研发与生产医疗器械细分行业说明:综合专精特新“小巨人”医疗企业培育情况,根据行业特征、企业分布等因素,选定三大细分行业展开分析。232023.3 iResearch I医药研发与生产行业现状化学制药市场占比依旧领先,创新药赛道正有序扩张我国医药研发与生产呈现高技术、长周期、高投入等行业特征。三大细分领域分别来说,化学制药收入在细分领域中占比最大,发展速度快于平均水平,发展空间广阔。生物制药相比之下收入占比依然较低,但增速处于较高水平。中药具有明显的内循环特征,中药材具有一定地域性,具备资源属性,同时掌握上游中药材资源的中药生产企业将拥有更多发展机会。从创新程度分类来说,行业内仿制药壁垒较低,企业较为分散,受一致性评价、集采等政策影响需优化药品价格提升药品质量;创新药国内市场仍较为初级,处于加大研发投入,有序扩张阶段。来源:中国化学制药工业协会,国家药品监督管理局,艾瑞咨询研究院自主研究及绘制。医药研发与生产发展现状及行业特征 占比占比仍有较大提升空间 特征中药材具有资源属性产业链内循环明显 占比占比相比化学制药仍然较低 增速增长潜力大于化学制药增速高于中国整体医药市场收入增长速度化学原料药4265亿元中药化学制药 2021年行业收入化学药品制剂8408.7亿元生物制药 占比:化学制药从市场规模、公司数量和市值等方面看都是占比最大的板块行业特征行业分类仿制药行业壁垒低 集中度低创新药市场较为初级,国产创新药占比低一致性评价带量采购政策研发各公司不断加大研发投入 2021年仿制药质量和疗效一致性评价注册申请908件 2021年受理创新药注册申请1886件(998个品种)行业发力点39940857375211667612312729666631391823542017年2018年2019年2020年2021年2017-2021年创新药受理量创新化学药(件)创新生物制品(件)创新中药(件)技术含量高周期长投入高收益高行业特点仿制药 提高药品质量 降低药品价格创新药 加大研发投入 注重创新抢占赛道242023.3 iResearch I 企业效能:未来医药制造将逐步向智能化研发与生产转型,实现制药过程网络化、数字化、精细化发展,以此提升企业效能。医药研发与生产行业发展方向产业链上下游联动,实现创新研发迭代与行业智能化探索在我国医药研发与生产市场需求始终处于高位的条件下,这一行业发展前景广阔。医药制造行业是关系国计民生的重要领域,其发展始终受到国家相关政策的支持。在此基础上,产业链方面将日益向平台化、产业化与智能化方向发展,实现产业链上下游的资源整合与联动共进。企业转型方面,在仿制药受到冲击、创新药加速发展的背景下,医药企业将加速进行智能化升级与改造,实现精细化、智慧化的研发与生产,由此进一步提高企业在细分领域的话语权。研发创新投入方面,行业在政策的支持下将不断加大研发投入,提高创新能力,提高产品质量,加快国际化步伐,促进行业高质量发展。来源:各公司年报,艾瑞咨询研究院自主研究及绘制。医药研发与生产行业未来发展方向产业链上下游联动赋能智能化平台化产业链联动医药研发与生产产业链上下游公司未来将依托平台化、产业化与智能化的核心能力做到相互赋能,共同成长。上游:一站式服务平台赋能行业 下游:创新研发平台促进创新 上游:拓展产能形成规模优势 下游:持续推进新产品商业化进程 通过信息化智能化升级,赋能上下游企业智慧研发生产企业转型智能化程度企业效能企业效能(假设沿用原有设备技术)企业效能(假设进行智能化升级)智能化升级促使超过原有企业效能 企业结构:面对激烈的国内外竞争,企业将进行系列兼并、重组、整合动作,这在一定程度上提高了生产的集中度与规模经济效益。研发创新投入 依据“双十定律”,医药研发与生产企业将逐渐加大对新产品、新工艺的投入开发力度,加大创新药研发的投入;行业科技研发与创新属性进一步增强,由依靠生产制造逐步向依靠科技技术进步转移。研发投入:国内外头部制药企业纷纷加大医药研发投入以完善自身的核心优势,研发费用呈现增长趋势。119.0 122.5 123.4 26.7 39.0 59.4 59.4 7.1 10.7 9.3 9.8 2018年2019年2020年2021年强生研发费用(亿美元)恒瑞医药研发费用(亿人民币)华东医药研发费用(亿人民币)2018-2021年国内外头部制药企业医药研发费用252023.3 iResearch I医药研发与生产“小巨人”企业分析企业总体数量最多,生物制药领域分布最为广泛医药研发与生产领域的专精特新“小巨人”企业伴随着一到四批时间的变化展示出不同的特点。总体数量方面,医药研发与生产企业数量最多,比例占到三大领域数量的一半,这与国家发展专精特新以鼓励制造业做大做强这一目标完美契合。从细分领域来看,“小巨人”企业主要分布在生物医药领域,化学制药、中医药领域企业数量较少,这主要因为化学制药虽然拥有更高的市场份额但仍以仿制药为主,而生物制药的疾病治疗方向市场热度较高,更多企业入局并加快研发,其研发创新性更符合“专精特新”小巨人发展,同时通过成为“专精特新”小巨人,企业能够获得国家更多地研发与创新支持。来源:艾瑞咨询研究院自主研究及绘制。医药研发与生产“小巨人”企业总体数量与主要分布领域 行业特征化学制药是医药制造业重要组成部分,市场份额最大,但其尽管有上万亿元的药品消费市场,却主要以仿制药为主,创新性不高;反观生物制药,在治疗市场更为关切的肿瘤、癌症等方面有极大优势,市场更多玩家开始开拓生物制药板块并专注研发新药;因此在专精特新“小巨人”企业中,生物制药凭借其市场关注度及未来发展前景挤占更多数量,更利于获取国家研发支持。4512654724111545912151343871第一批第二批第三批第四批医药研发与生产细分领域企业数量生物制药(个)化学制药(个)中药(个)总计(个)领域分布 企业情况:一到四批医药研发与生产“小巨人”企业共计258个,占到医疗企业的50.4%。总体数量 行业特征:医药生产企业占到专精特新“小巨人”医疗企业的半数,这与国家发展专精特新以鼓励制造业做大做强这一目标完美契合。50.4%企业情况:细分领域上,生物制药企业数量最多,达到135个,占医药研发与生产企业的52.3%。52.3&2023.3 iResearch I 行业特征:行业内大型企业市场占有率高,这使得中小型企业规模普遍偏小,同质化竞争现象严重;反映在“专精特新”小巨人企业当中,上市企业数量极少,大多企业虽有差异化优势,能够在激烈的竞争中脱颖而出,但其企业本身规模与市占依然较小,多为非上市企业。医药研发与生产“小巨人”企业分析出于技术、资源、成本等因素考量,企业选址有所不同上市情况上,由于行业中大型企业市占率高、中小企业数量多、规模小等特点,“专精特新”小巨人企业上市数量少,占比仅有19.8%,大部分企业凭借差异化优势在市场上占有一席之地,但其体量与规模仍未达到上市水准。地域分布方面,医药研发与生产企业东部地区分布多,这体现东部经济发展与资源禀赋对中小企业的巨大吸引力。同时,中部与西部地区也有一定比例分布,这侧面反映出与医疗器械及医疗服务企业相比,部分从事医药生产、原材料种植、加工等的医药企业对技术依赖度相对较低,主导其区域分布的更多是人力、土地等因素,以降低生产成本。来源:艾瑞咨询研究院自主研究及绘制。医药研发与生产“小巨人”企业上市情况与地域分布特征东部地区,48.1%中部地区,24.4%西部地区,20.2%东北地区,7.4%东部地区中部地区西部地区东北地区147255第四批第三批第二批第一批上市企业数量(个)上市企业:51企业总计:258占比:19.8%医药研发与生产上市企业数量医药研发与生产企业区域分布占比上市情况区域分布 企业情况:一到四批医药研发与生产“小巨人”企业共计258个,其中上市企业只有51个,上市企业占比仅有19.8%。19.8%企业情况:医药研发与生产“小巨人”企业多集中在中东部地区,东部地区占比达到48.1%。48.1%行业特征:医药研发与生产行业中,医药研发对地区资源禀赋与技术加持更为看重;医药生产制造则可以酌情平衡技术、资源、土地、人力等各方因素,以寻求最佳区位布局;反映在专精特新“小巨人”企业中,由于特色化、新颖化标准框定,企业技术、资源导向型布局更多,多在东部地区;但同时部分从事医药生产、原材料种植、加工等的医药企业对技术依赖度相对较低,布局在中西部地区可以获得土地、人力等优势,以降低生产成本。27专精特新“小巨人”医疗细分领域医疗服务医药研发与生产医疗器械细分行业说明:综合专精特新“小巨人”医疗企业培育情况,根据行业特征、企业分布等因素,选定三大细分行业展开分析。282023.3 iResearch I287.02 994.09 2019年2021年医疗器械出口额(亿美元)267.85 446.78 2019年2021年医疗器械进口额(亿美元)医疗器械行业现状政策与需求奠定行业基础,壁垒高与研发弱仍是制约因素医疗器械行业是一个知识密集、资金密集且多学科交叉的高技术产业。近年来,医疗器械领域政策频发,行业需求旺盛,支付能力提升,这些因素叠加使得医疗器械进出口贸易额以及注册数量均有显著上升,行业发展较好。但同时应注意,中国医疗器械产业起步较晚,受益于庞大的国内需求使得行业呈现高位增长,而高端医疗器械依然拥有很高的行业壁垒,我国医疗器械行业呈现出“大而不强”的现状。高端医疗器械产品国产化率较低,现有医疗器械更多趋向于进口,国内企业研发投入较低,创新能力较弱,这无疑成为行业发展的制约因素。来源:中国医药保健品进出口商会,艾瑞咨询研究院自主研究及绘制。医疗器械行业发展现状及影响因素行业发展有利因素行业发展制约因素政策推动行业扩容 国家各部门发布大量医疗器械相关文件,涉及质量安全、标准化、带量采购和注册审批等方面,规范并保障行业健康发展。人口老龄化催生行业需求 人口老龄化是医疗需求增长的源动力,中国老龄化呈现规模大、程度深、速度快的明显特点,这为行业奠定了巨大的需求基础。收入增加大幅提高支付能力 随着国民经济水平的提升、人均可支配收入的增长以及医保的全面覆盖,医疗健康服务的支付能力正逐步增强。高端市场技术壁垒高 高端市场被跨国公司占据,我国医疗器械行业起步晚,与全球差距大,高端设备技术壁垒高,仍主要依赖进口,导致医疗费用高昂。企业竞争力弱,集中度低 我国医疗器械生产企业规模普遍较小,行业较为分散,集中度低。目前市场中竞争者较多,但尚未出现垄断企业。企业研发投入低,创新能力弱 相比发达国家,中国企业研发创新投入较低,具有完全自主知识产权可以替代发达国家进口产品的医疗器械依然较少。医疗器械行业现状5528 8471 9849 11314 2018年 2019年 2020年 2021年2018-2021年药监局批准医疗器械注册情况医疗器械注册数(项)医疗器械69.3%体外诊断试剂30.7 21年按注册品种分类医疗器械进口额医疗器械出口额 由于新冠防疫物资需求增加,中国医疗器械企业2021年出口贸易额较2019年呈倍数级增长。2018-2021年中国医疗器械注册数逐年递增。292023.3 iResearch I医疗器械行业发展方向国产替代进程进一步加快,持续的技术创新成为必然方向中国医疗器械行业以其重要性加持未来将有巨大的市场发展空间。首先,面对我国高端市场被持续垄断,医疗器械进口依赖度高这一局面,政府高度重视行业发展,相继落地各项政策,这推动市场不断涌现出具有更强竞争力的国产企业。随着技术的不断进步以及支付水平的日益提高,预计未来国内产品将取得更高的市场份额,加速实现国产化替代。其次,随着医学、材料学等上下游行业技术的进步以及信息技术的赋能,医疗器械的研发生产与流通全流程将不断向数字化、智能化、精确化方向发展,从而大幅提升其质量与使用效率。来源:艾瑞咨询研究院自主研究及绘制。医疗器械行业发展方向探索12融合新兴技术提升创新能力国产替代进程进一步加速 发展后疫情时代,全球加强公共卫生建设,顺应医疗新基建浪潮,为国内医疗器械产品出海提供发展机遇,医疗器械行业国产替代、国际化进程持续加速。政策推动中国制造2025“十三五”医疗器械科技创新专项规划政策明确提出提高医疗器械的创新能力与产业化水平,相关鼓励配套措施将不断落地,医疗器械国产化进程将不断加速。接受度提升耗占比:重点监控高值医用耗材收入占比 使国内医院对部分进口产品和品牌的依赖降低;通过价格压力促使医院选择国产医疗器械。研发生产流通互联网AI5G大数据.新技术赋能医疗器械全流程 发展随着大数据、AI、5G等技术的不断发展,“互联网 ”将与医疗器械行业紧密结合,全行业的信息化程度将普遍提升,实现产品的信息可追溯,用信息化手段对医疗器械研发、生产、流通全过程进行监管。302023.3 iResearch I 行业特征中国医疗器械高端市场仍被国际巨头垄断,因此国产替代成为重大发展方向,目前的“小巨人”主要方向是实现细分领域的国产替代;伴随着2020-2022的新冠疫情,更多体外诊断玩家涌入,入选的体外诊断“小巨人”企业也有明显的增加。医疗器械“小巨人”企业分析总体数量次多,疫情时期体外诊断企业入选数量增长明显中国是全球最大的医疗器械市场之一,其市场规模和需求正在不断增长,在制造业大力发展的浪潮之下,专精特新“小巨人”医疗企业当中,医疗器械企业数量仅次于医药研发与生产企业。但目前中国医疗器械市场竞争激烈,国内企业仅在低端设备耗材市场有一定优势,国际企业更多占领高端市场,这使得中国医疗器械企业难以向高端化市场发展,国产替代化进程刻不容缓,因此一到四批专精特新“小巨人”企业多是有一定的技术前沿性优势,能够实现国产替代并进行自主创新的高价值企业。除此之外,随着2020-2022年新冠疫情的动态变化,体外诊断企业大量兴起,技术成熟、效果优良的企业更多地进入“小巨人”企业名单。来源:艾瑞咨询研究院自主研究及绘制。医疗器械“小巨人”企业总体数量与主要分布领域 企业情况:一到四批医疗器械“小巨人”企业共计230个,占到医疗企业的44.7%。总体数量 行业特征:在国家大力推动制造强国发展战略的背景下,医疗器械制造企业数量同样较多,这与现阶段的国家战略密切相关。44.7%领域分布 企业情况:医疗设备与耗材上,心血管、骨科、康复等领域入选企业数量最多;体外诊断大类也成功入选企业42个,其中第四批涨幅最大。96255620112299636791第一批第二批第三批第四批医疗器械细分领域企业数量医疗设备与耗材(个)体外诊断(个)总计(个)按照科室分类:心血管:21 骨科:15 康复:12 呼吸:10 血液:7 眼科:5 口腔:5 神经:4 肿瘤:3.312023.3 iResearch I 行业特征:行业高端医疗器械市场多被国际巨头所垄断,国内企业很难进入,同时在低值器械领域国内企业数量众多同质化严重,只有少数企业能够凭借自身优势领先,这就导致“小巨人”械企上市企业数量不多。医疗器械“小巨人”企业分析依托东部地区技术与资源优势,械企逐步加强自主创新目前中国医疗器械市场呈现国产替代、低端向高端不断突破的发展趋势,专精特新“小巨人”企业更青睐技术能力优异、能够进行国产替代并专注研发创新的中小企业。结合国内高端市场被垄断、技术不成熟的现状,专精特新“小巨人”企业成功上市的不多。除此之外,医疗器械企业的地域选择与区域的经济发展情况、技术能力支持、生产制造成本等多方因素相关,因此在企业的地区分布上,基于国产替代、自主创新这一目标,“小巨人”企业多分布在产业基础与技术力量更为雄厚的东部地区,这一占比达到74.2%。来源:艾瑞咨询研究院自主研究及绘制。医疗器械“小巨人”企业上市情况与地域分布特征1718265第四批第三批第二批第一批上市企业数量(个)上市企业:66企业总计:230占比:28.7%医疗器械上市企业数量医疗器械企业区域分布占比上市情况区域分布 企业情况:一到四批医疗器械“小巨人”企业共计230个,其中上市企业只有66个,上市企业占比仅有28.7%。企业情况:医疗器械“小巨人”企业大多集中在东部地区,东部地区占比达到74.2%。行业特征:医疗器械行业低值市场附加值低,发展潜力不大,因此专精特新“小巨人”企业更多聚焦于深入高值领域、有能力进行国产替代的中小企业;国产替代需要强大的科技能力,以进行医疗器械的研发与创新;从中国区域资源分布来看,东部地区产业基础与局能力更为雄厚,吸引更多械企在此布局;同时在入选“小巨人”后,东部地区对企业研发创新支持力度也将更大。东部地区,74.2%中部地区,12.9%西部地区,8.8%东北地区,4.1%东部地区中部地区西部地区东北地区28.7t.22专精特新“小巨人”医疗细分领域医疗服务医药研发与生产医疗器械细分行业说明:综合专精特新“小巨人”医疗企业培育情况,根据行业特征、企业分布等因素,选定三大细分行业展开分析。332023.3 iResearch I医疗服务行业现状-医疗信息化搭建智能信息平台,实现医院、临床、区域间的互联互通医疗信息化旨在通过新兴技术的加持,提升用户与患者体验,构建智慧医疗生态圈,进而实现医疗服务模式的革新。中国医疗信息化主要分为医院信息化、临床信息化以及区域信息化,信息化的建设能够大幅提升医生的工作效率,提高患者的满意度和信任度,无形之中树立起医院的科技形象。同时各方在政府的倡导下搭建区域信息化平台,能够促进区域信息共享与协同发展。因此,受政策、需求等因素驱动,中国医疗信息化加速发展,医疗与基础平台的融合正成为国内医疗信息化发展的重要方向。来源:艾瑞咨询研究院自主研究及绘制。医疗信息化主要应用与价值医院信息化医疗协同药事服务运营管理流程便捷服务安心临床信息化门诊治疗影像管理以患者为核心区域信息化区域信息共享医疗大数据电子健康档案公共卫生应急管理住院诊疗管理高效医疗服务应用场景药品管理传统信息化商业模式生态价值聚焦广泛且深入的信息化需求致力于全面赋能医疗健康生态利用信息化技术助力智慧应用分类医务管理平台BI决策平台护理管理平台医院信息系统影像信息系统临床信息系统.药店社区医院居民社区服务健康管理送药到家远程医疗协同医院信息化互联网信息化平台342023.3 iResearch I医疗服务行业现状-医药流通数智化环境愈加成熟,为医药流通高效运营提供有力支撑在传统的医药流通模式中,流通通路与采购模式单一,终端购买成本较高,在这一情况下,医药电商介入医药流通,将传统流通方式平台化、线上化、多样化,丰富流通渠道,改变药品低效供应链,直接连接各端,节省终端消费者的购买成本,促进了医药流通的良性发展。科技的成熟发展与应用将持续推动医药电商平台快速发展,助力行业的商流、信息流、物流及资金流的高效配合与流通。医药电商进而将覆盖全场景、全品类与全渠道服务,渗透至用户生命健康全周期的各类需求。来源:艾瑞咨询研究院自主研究及绘制。医药流通的数字化发展及价值医药电商模式传统医药流通模式药械患者批发企业零售终端药械患者批发企业零售终端B2CB2BO2O模式演进科技赋能技术赋能数据赋能智能仓配管理体系冷链箱周转体系智能用药系统.帮助上下游整合资源 优化物流链路,提升运载效率 使下游服务更加高效、便捷数据监测数据平台.便于各主体之间信息壁垒的消除 精准把握患者用药需求 辅助药企研发决策 流通模式较为单一,各主体间存在信息孤岛,可能存在终端购买成本较高的现象。线上电商模式介入,有效减少信息壁垒,提升流通效率。生态价值全场景筛查诊断治疗用药康复保健院内院外线上线下全渠道全品类药品医疗器械滋补养生保健品.352023.3 iResearch I医疗服务行业发展方向参与健康管理全过程,为患者提供全生命周期医疗健康服务当前,医疗服务行业通过人工智能等技术驱动服务提质增效的需求日渐迫切。医疗健康服务正在逐步引入数字化技术,从满足基础功能需求向提升个性化、智能化诊疗服务体验发展。人工智能等技术已在医疗行业进行诸多探索,未来将呈现巨大的应用发展潜力。随着其与医疗服务融合的不断深入,医疗服务的发展必将从目前的技术、工具驱动向以人为本的价值医疗演进,力求实现“无处不在的医疗”以及“全生命周期关怀”。来源:艾瑞咨询研究院自主研究及绘制。医疗服务行业发展方向探讨保健家庭公共卫生机构康复机构养老机构中年诊断用药青年以人为本基层医疗医院健康管理机构婴幼儿儿童老年筛查治疗康复无处不在无时不在云计算物联网AI大数据5G技术的不断升级驱动医疗服务提质增效,促进行业向以人为本的价值医疗演进。362023.3 iResearch I医疗服务“小巨人”企业分析医疗服务入选企业较少,行业未来发展空间广阔中国的医疗服务市场规模庞大,随着人口老龄化趋势的加快和居民生活水平的提高,群众医疗服务意识产生大幅的提升,医疗服务市场的需求不断增加。但在专精特新“小巨人”企业的培育进程中,短期内仍以中国高端制造业的发展为主线,服务类的技术导向型医疗企业入选“小巨人”较少。在一到四批专精特新“小巨人”医疗企业当中,由于疾病诊断与疾病治疗的需求催化,医学检验、医疗信息化以及辅助诊疗企业数量正逐步提升,这也反映长期来看国家与行业将更加注重科技导向、以人为本的服务发展方向,医疗服务行业未来发展空间十分广阔。来源:艾瑞咨询研究院自主研究及绘制。医疗服务“小巨人”企业总体数量与主要分布领域1010025400230026121013第一批第二批第三批第四批医药流通(个)医学检验(个)医疗信息化(个)辅助诊疗(个)医疗服务细分领域企业数量 行业特征伴随着人口老龄化进程加快与居民生活水平提高,中国医疗服务市场需求不断扩大,整体市场规模十分庞大;短期专精特新医疗服务领域的培养以疾病诊断与治疗需求为主,但秉持着以人为本、服务于人的理念,未来全流程的医疗服务将大有发展。企业情况:一到四批医疗服务“小巨人”企业共计26个,占到医疗企业的5.1%。总体数量 行业特征:在专精特新“小巨人”企业的培育进程中,短期内仍以中国高端制造业的发展为主线,力图提升中国的产业链地位。领域分布 企业情况:整体入选领域分布较少,主要伴随疾病诊断与治疗的需求而兴起;医学检验与辅助诊疗等细分领域入选企业数量最多。5.172023.3 iResearch I医疗服务“小巨人”企业分析医疗服务企业技术导向最为明显,大多分布在东部地区上市情况上,与医药研发与生产以及医疗器械领域类似,行业进入者多但规模尚小,头部领先企业不多,因此整个行业上市公司数量较少。地区分布上,中国的医疗资源分布不均,东部和西部地区之间存在巨大的差距,加之人工智能、大数据等技术的应用正在不断改变医疗服务的模式和内容,这使得高附加值、强技术导向的医疗服务企业绝大多数分布在最为发达的东部地区,这在医药研发与生产、医疗器械与医疗服务三大领域中占比最高,达到84.6%。来源:艾瑞咨询研究院自主研究及绘制。医疗服务“小巨人”企业上市情况与地域分布特征 行业特征:医疗服务最为贴近居民生活,受益于市场需求的不断增长,医疗服务有着良好的发展前景;也正因为行业的广阔性与需求的多样性,医疗服务细分赛道庞杂,进入者良多,因此行业大多处于初步聚合的状态,各领域的头部上市企业较少。2第三批上市企业数量(个)上市企业:2企业总计:26占比:7.7%医疗服务上市企业数量医疗服务企业区域分布占比上市情况区域分布 企业情况:一到四批医疗服务“小巨人”企业共计26个,其中上市企业只有2个,上市企业占比仅有7.7%。企业情况:医疗服务“小巨人”企业大多集中在东部地区,东部地区占比最高,达到84.6%。行业特征:医疗科技类企业对地域资源与科技依赖程度高,消费医疗则更看地区经济水平与消费能力;我国东部和西部地区之间在地区资源禀赋、经济发展情况、技术能力支持等方面存在存在巨大差距,因此绝大多数医疗服务企业选择分布在资源密集的东部地区;同时,医疗服务企业目前体量尚小,东部地区对专精特新“小巨人”的资金、研发等扶持力度更大,更利于企业的创新发展。7.7%东部地区,84.6%中部地区,7.7%西部地区,3.8%东北地区,3.8%东部地区中部地区西部地区东北地区84.68观局:“专精特新”概述1入局:专精特新之“小巨人”医疗企业2稳局:政府侧“专精特新”培育生态3破局:企业侧“专精特新”发展路径4拓局:投资侧“专精特新”赛道展望5392023.3 iResearch I培育生态:放好活水,养好活鱼政策支持:各省市政府公布“专精特新”企业培育总体目标自“专精特新”这一理念提出以来,为持续引导中小企业向“专精特新”方向发展,在中央的统一领导指示下,全国各省市陆续公布了“十四五”时期的发展目标与方向。其中,多个省市明确提出了“专精特新”企业培育的目标数量,为地方中小企业的专精特新培育指明方向与目标。注释:未公布具体培育目标的省市未进行统计,例如宁夏、新疆。来源:各省市政府官网,艾瑞咨询研究院自主研究及绘制。“十四五”时期全国各省市“专精特新”企业培育目标地区省市国家级数量省市级数量华北地区北京500家(2025年)6000家(2025年)天津150家(2025年)1000家(2025年)河北500-600家(2025年)4500-5000家(2025年)山西300 家(2025年)3000 家(2025年)内蒙古80家(2025年)200家(2025年)东北地区辽宁/50家(每年新增)吉林/1000家(2025年)黑龙江60家(2025年)600家(2025年)华东地区上海300家(2025年)5000家(2025年)江苏150 家(2025年)600 家(2022年新增)浙江1000家(2025年)10000 家(2025年)安徽500 家(2025年)5000 家(2025年)福建/1000家(2025年)江西5500家(2025年)山东750家(2025年)10000家(2025年)地区省市国家级数量省市级数量华中地区河南100家(每年新增)1000家(每年新增)湖北12000 家(2025年)湖南/300家(每年新增)广东200家(2022年新增)1000家(2022年新增)华南地区广西/2300 家(2025年)海南40家(2025年)500家(2025年)西南地区重庆300家(2025年)2500家(2025年)四川350 家(2025年)4000家(2025年)贵州16家(每年新增)100 家(每年新增)云南100家(2025年)2300家(2025年)西藏10家(2025年)50家(2025年)陕西1000家(2025年)西北地区甘肃100 家(2025年)400 家(2025年)青海/200家(2022年)数量总计“专精特新”中小企业目标:10万家“专精特新”中小企业已培育:5万 家402023.3 iResearch I 银行提供“专精特新”专项金融服务方案;探索为“专精特新”中小企业申请在新三板挂牌开辟绿色通道;区域股权交易中心设立“专精特新板”。高新技术企业减按15%征收企业所得税;研发费用加计扣除;税收即征即退;小微企业普惠型税收减免。2021-2025年中央财政累计安排100亿元以上奖补资金,分三批重点支持1000余家国家级专精特新“小巨人”企业;根据不同地方政策,对国家专精特新“小巨人”企业额外给予5-200万不等的一次性奖励补助。培育生态:放好活水,养好活鱼资金支持:以资金流为切入点,助力企业长远发展面对顶层设计的倾斜与推动,各地加强对“专精特新”企业的资金支持。包括资金奖励、税收优惠、股权融资、信贷支持等多个方面。其中政府部门支持方式多以设立发展基金、提供融资政策支持、加强供需对接与政策引导金融产品创新为主,财政部、工信部联合印发关于支持“专精特新”中小企业高质量发展的通知中明确指出,2021至2025年,中央财政累计安排100亿元以上奖补资金,引导地方完善扶持政策和公共服务体系,分三批重点支持1000余家国家级专精特新“小巨人”企业高质量发展;金融机构则以推出专属信贷、保险产品及增值服务的形式提供支持。来源:艾瑞咨询研究院自主研究及绘制。针对“专精特新”企业的资金支持概览专精特新企业资金支持贯穿企业成长全流程的资金流支持 财政奖励 相关税收优惠 融资、融券等的支持财政税收股权债券信用资金流贯通多层级、多维度培育举措财政奖励税收优惠融资服务412023.3 iResearch I培育生态:放好活水,养好活鱼资本支持:北交所开市为“专精特新”企业发展按下快进键国家加大资本市场对中小企业,特别是“专精特新”企业的支持与服务力度,这对提升中小企业创新能力和专业化水平,助力实现“保链稳链强链”具有重要意义。其中,北交所的成立更是为中小企业加快上市提供有力支持,北交所中创新型中小企业集聚效应不断增强,灵活高效的融资机制运行更加顺畅,初步形成有活力、有韧性的市场生态,多层次资本市场互联互通更加顺畅。截至2月28日,北交所总市值 近 2500亿元,包含生物医药、高端装备制造、大消费、TMT及化工新材料五大产业集群。北交所175家上市公司中,有70家是国家级专精特新“小巨人”企业,占比达到40.0%。注释:时间截止至2023年2月28日。来源:艾瑞咨询研究院自主研究及绘制。北交所市值及企业类型 截至2023年2月28日,北交所总市值近2500亿元。北交所总市值(亿元)近2500亿化工新材料生物医药高端装备制造大消费TMT.北交所上市企业包含生物医药、高端装备制造等产业集群北交所“专精特新”企业数量 截至2023年2月28日,北交所共上市170家企业。17570企业数量上市企业(个)国家级专精特新“小巨人”企业(个)40.0%北交所申请上市流程及时间尽调和准备材料2-3个月中介机构内核1个月基础层股票审核反馈3-4个月基础层挂牌公司转板创新层1-2个月股改1-2个月新三板挂牌阶段不少于12个月北交所审核反馈3-4个月证监会注册反馈1-2个月公开发行 北交所上市流程及所用时间较短,审核较为高效。主板2年左右创业板科创板1年左右北交所9-12个月各板块上市时间对比北交所上市流程北交所适配“专精特新”企业加速发展422023.3 iResearch I培育生态:放好活水,养好活鱼产业链支持:开放产业链资源,助力大中小企业互联互通“专精特新”中小企业作为国民经济和社会发展的主力军,成为推动创新、促进就业、改善民生的重要力量。在促进专精特新发展上,产业链层面培育生态逐步明晰,中央实施优质企业梯度培育工程,通过中小企业服务平台网络集聚服务资源,不断健全中小企业服务体系;同时发挥“链主”企业带动作用,推动大中小企业融通发展;引导专精特新企业加大创新研发投入,参与制造业强链补链,加速企业创新发展。来源:艾瑞咨询研究院自主研究及绘制。“专精特新”企业的产业链支持举措优化服务效能促进产业链融通发展加大研发创新投入 工信部征集市场中配套服务和产品支持相关企业成长。领域产品名称优惠市场开拓专精特新中小企业数字化全球供应链服务云平台5折优惠企业创新大型实验室仪器共享服务8折优惠数字化垂直行业工业互联网服务8-9折优惠知识产权高价值专利导航、预警和培育服务8.5折优惠医疗领域部分专精特新中小企业服务产品2021年累计开展“中小企业服务月”等活动1500余场,服务中小企业100多万家次。北京2020-2021年,“专精特新”企业高质量发展巡诊活动共问诊“专精特新”中小企业190多家,深度诊断企业86家。江苏措施落地 施行链长制,在产业链中“链长”带头,“链主”联动,厚植产业优势。链长:省级政府领导负责相应产业链招商的组织领导副链长:产业链所在地党政主要领导负责落实各条产业链招商的具体推动工作链主:相关龙头企业负责协调目标企业,联动制定工作计划,推动资源配置主要协同部门:政府多个部门负责产业链招商引资项目签约、审批、建设、投产等各环节的协调配合措施落地“创客北京2021”中小企业创新创业大赛发挥大企业“链主”作用,吸引全国2000多家中小企业参赛。北京采取“母基金 子基金”的运作方式,推动细分行业、产业基金的设立、运作和投资,形成财政出资合力。福建 长期支持中小企业创新发展,进一步提升中小企业创新能力和专业化水平。在前沿技术研发及成果转化项目的申报中,政府会对专精特新企业给予政策倾斜,知识产权申报通道、税收优惠等政策扶持。政策扶持针对典型应用场景,引导数字化服务商面向中小企业开发使用便捷、成本低廉的数字化解决方案。服务支持加大对知识产权保护力度,提高侵权成本。知产保护措施落地深圳市举办专精特新“小巨人”企业融通创新路演暨创新产品展示对接会,32家专精特新企业进行了创新产品发布、展示及对接。深圳432023.3 iResearch I典型区域案例:百舸争流,奋楫者先上海:城市总体引领,多措并举赋能企业长远发展长三角地区是我国经济发展最活跃、开放程度最高、创新能力最强的区域之一,这也造就长三角城市成为了专精特新企业培育和成长的热土。长三角城市群经济实力雄厚、产业优势突出,上海市作为代表性城市,目前拥有专精特新“小巨人”企业超五百家,发达的外向型经济为专精特新“小巨人”企业的目标提供发展动能。上海市从事创新、研发等领域的高端人才集聚,政府连续十年为企业家开展培训,打造专精特新领军人才;同时对评选企业给予资金奖励与贷款扶持,帮助企业进行知识产权学习与专利申请,为企业的进一步发展注入创新活力。来源:政府官网、公开资料,艾瑞咨询研究院自主研究及绘制。上海城市总体引领模式下专精特新企业培育成效企业情况 企业总数:上海目前拥有专精特新“小巨人”企业超五百家;成立时间:平均成立年限15年;行业分布:从行业分布来看,智能制造占比最多,医疗企业共计49家。培育目标专精特新“小巨人”企业培育目标:1000家强化优质中小企业的动态管理,建立健全“有进有出”的动态管理机制。“十四五”期间,努力在全市推动培育十万家左右创新型中小企业、一万家左右专精特新中小企业、一千家左右专精特新“小巨人”企业。上海市经信委上海市优质中小企业梯度培育管理实施细则,2022.11培育成效“专精特新”企业领军人才培训班 自2011年起,上海市中小企业发展服务中心率先举办“专精特新”企业领军人才培训班,持续举办10年,超2000企业家参与培训;联合复旦大学,上海交通大学,为“专精特新”企业掌舵人开展能力提升培训。“专精特新”企业资金奖励与扶持 实现奖励全覆盖。市级“专精特新”中小企业给予奖励10 万;国 家 级 专 精 特 新“小巨人”企业奖励30万;为符合条件的专精特新中小企业提供最高1000万元的贷款担保;合作银行包括工行、农行、中行、建行、交行、浦发、兴业、上行、上海农商行等。知识产权服务专精特新中小企业 上海市知识产权局优先支持“专精特新”中小企业申报国家知识产权示范和优势企业;组织开展“知识产权宣传周”系列活动;组建“专精特新”中小企业服务团队,提供知识产权创造、运营、法律等咨询服务。442023.3 iResearch I典型区域案例:百舸争流,奋楫者先深圳:区域定向培育,推动区内医药企业厚植产业优势深圳市作为中国改革开放的前沿城市之一,也是中国的高新技术产业重镇,聚集了大量的“小巨人”医疗企业,其中南山区是深圳市的一个核心区域,有良好的产业、学术科研和政策支持,华大基因、同方生物、万泰生物、新疆天山生物等一大批知名的医药“专精特新”企业均设有总部或分支机构,形成了相对密集的产业集群。依托产业集群优势,南市区政府近年来不断加强专精特新企业政策扶持,并从产业园区建设、人才引进、创新孵化器、行业交流、政企合作、资金支持等方面采取系列措施,形成独特培育体系,取得了显著成效。来源:政府官网、公开资料,艾瑞咨询研究院自主研究及绘制。深圳区域定向培养模式下专精特新企业培育成效建设医疗健康产业园区 措施:南山区政府设立了多个医疗健康产业园区,如南山生物医药产业园、华大生命科学产业园、深圳国际生物谷等;意义:为医疗企业提供场地和资源支持,增强集聚效应,加速了医疗产业的发展。加强医疗人才引进 措施:政府鼓励医学院校和医疗机构加强教育培训来培育人才,并通过优化营商环境,设立人才公寓、开展人才计划等措施帮助企业引进和留住高端人才;意义:提高医疗人才素质和技能水平,解决技能人才后顾之忧,为医疗产业的发展提供了有力的人才支持。创新孵化器 措施:南山区设有多个科技园区和创新孵化器,如南山科技园、南山创新创业中心等,鼓励企业参与“创客中国”(深圳)创新创业大赛,对获奖项目给予奖励支持;意义:为医药专精特新企业提供创新、研发与孵化的场所,推动医疗技术和服务创新,加大专精特新企业新产品推广力度,促进了医疗产业的升级。行业交流与政企合作 措施:南山区定期组织医药专精特新企业间的交流和合作,积极推动政企之间的合作;意义:交流企业发展与创新经验,促进行业的多元发展。资金支持 措施:南山区对评选为专精特新的企业发放资金奖励,并为医药专精特新企业设立专项资金;意义:支持企业研发、生产和市场拓展等需求,推动了医疗产业的发展。452023.3 iResearch I典型区域案例:百舸争流,奋楫者先长春:园区建设推动,促进医药健康产业集群化规模化发展长春新区坚持把医药健康产业作为重中之重,加快构建医药产业链条和生态体系,打造吉林省重点医药产业园区长春医药健康产业园区。自2014年设立以来,园区大量引进医药健康领军企业,助力医药健康“专精特新”企业发展,孵化创新医药企业,使其集群效应逐步显现,形成全产业链条医药健康企业排布,助力企业间优势互补。与此同时,园区着力打造医药健康产业发展核心引擎,加强产学研合作以提升园区创新能力。在多措并举之下,长春新区产业竞争力大幅提升,产值突飞猛进,科技含量高、辐射带动力强、经济效益好的大企业与业务为园区医药健康产业持续发展增添后劲。来源:时间截至2022年1月7日,艾瑞咨询研究院自主研究及绘制。长春园区建设推动模式下企业发展情况产业集聚效应明显创新能力逐步增强25规模以上企业510亿元以上企业79高新技术企业13专精特新企业 长春医药健康产业园区先后引进国药集团、金赛药业、百克生物、迪瑞医疗等行业领军企业,医药健康企业总体发展到657户,其中:知名企业的引进加速形成产业集群效应,进一步促进了产业的聚集和升级。产业链条不断完善 园区企业涵盖医药研发、生产、销售、物流等全产业链;形成了以创新药、生物制品、医疗器械、生物材料等为核心的产业链条;实现了园区内各企业之间的协同发展和互补优势;平台建设促进了医药产业技术创新和人才培养,从而不断提升产业链条的竞争力。企业孵化器服务平台众创空间.建设细分产业集群 园区按照高标准建设了长春高新医药产业园、吉林省摆渡中医药健康产业园等9个医药产业园区,不断推出创新药物和高端医疗器械;加强产学研创新合作 集聚了长春生物制品所、中科院长春分院等医药技术研发中心23个,为现代中药、医疗器械、化学制药、医药物流等产业的高质量发展提供了坚实的技术支撑。经济效益稳步提升 园区各企业的年产值和利润不断攀升,医药健康占全区产业比重由2018年的18%上升到2021年的30%。国药集团2021年国药二大疫苗生产基地长春生物制品研究所新冠疫苗项目落位投产,完成产值40.7亿元;金赛药业2021年金赛药业生长激素获批三个新适应症生产批件,产值同比增长超60%;百克生物百克生物于2021年6月成功在科创板上市,挂牌首日涨幅超300%。46观局:“专精特新”概述1入局:专精特新之“小巨人”医疗企业2稳局:政府侧“专精特新”培育生态3破局:企业侧“专精特新”发展路径4拓局:投资侧“专精特新”赛道展望5472023.3 iResearch I企业发展目标:持续优化、跃升成长拓展行业视野,聚焦主业实现专、精、特、新发展随着全球经济格局的不断变化,中国内循环开启,这对中小企业专精特新化发展提出新的期待。在中国经济稳定发展的情况下,中小企业应不断借鉴“专精特新”企业发展经验以寻求发展。中小企业实现向“专精特新”企业迈进的发展目标,一是专注企业发展目标,精准定位自身行业赛道以深耕发展;二是以诚意服务、精工产品赢得客户的信任,在发展自身的同时成就客户;三是发挥特长,“专精特新”中小企业在“宽”与“窄”之中选择窄、专注和深入挖掘,力图在一个具体的产品或业务上形成绝对的竞争优势;四是以创新能力支撑企业持续发展,并以建设者的身份创造价值,优化行业生态。来源:艾瑞咨询研究院自主研究及绘制。中小企业专、精、特、新发展目标把握市场需求赢得客户信任超越竞争对手强化行业地位专注精诚特长创新以专注深耕市场深耕行业 敏锐洞察专家团队 需求管理 捕捉行业机会,精确行业定位补链型源自客户难题的机会强链型、优链型源自技术与竞争升级的机会创链型源自行业升级的机会以精诚赢得客户诚意服务 精工产品专业销售 本真品牌 为客户创造价值,得到客户信任产品价值服务价值关系价值协作价值以特长超越竞争专精技术 良性竞争危机意识 自我进化 形成良性竞合,以超越竞争对手相互促进的竞合关系竞争凭借自身产品、技术优势超越竞争对手合作通过交流合作,共同促进行业进步以创新持续发展长期主义 价值共创行业优化 生态共建 为行业及社会创造价值,得到各方信任定位行业生态建设者措施 深耕自身细分领域 坚持长期投入 注重价值创造愿景促进生态的优化与进化482023.3 iResearch I企业发展诉求:苦炼内功,成就能力市场战略、创新能力与数字化转型是企业发展的迫切诉求“专精特新”企业整体呈现年轻化特征,大多处于企业发展的成长期。根据江苏省中小企业专项问卷调查数据,产品性能达到国际先进水平的中小企业不足三成;逾一成企业没有创新活动,创新过程中行业与大企业支持力度不高,自身抵抗风险能力较弱;近四分之一的企业尚未开展数字化转型。针对这些现状,转变市场战略、专注细分领域、提升自主研发与合作创新能力、以及数字化转型成为现阶段中小企业专精特新化成长的迫切诉求。来源:江苏省中小企业专项问卷调查,N=875,艾瑞咨询研究院自主研究及绘制。“专精特新”企业现阶段发展痛点与诉求“痛点一:市场战略不明确企业产品性能不强,市场定位模糊发展诉求:锚定市场战略“痛点二:创新研发能力不强中小企业创新意愿不强,路径单一发展诉求:拓宽创新路径“痛点三:数字化转型能力弱企业的数字化转型不完全发展诉求:加强数字化转型高品质发展产品更加专注细分市场产品质量得到大幅提升产品性能达到国际先进水平优先推出新品抢占市场制约创新因素创新风险成本与收益不符缺少资本支持企业生存困境技术人才等创新要素不足终端需求下滑缺乏动力市场环境不健全创新发展诉求提升自主研发能力高校、机构合作研发与产业链大企业协同创新专利引进购买产业联盟研发行业协会辅助技术提升江苏省中小企业问卷显示:有近1/4中小企业未开展数字化转型 已有数字化转型实践以OA等信息化系统为主政府与行业产业链企业服务商优势扶持助力作用生态建设产业联动数字化服务492023.3 iResearch I企业发展路径:闻势而上,乘势而起宏观方向:紧跟国家培养赛道,探寻市场未来发展方向“十四五”规划明确提出“推动战略性新兴产业融合化、集群化、生态化发展”,强调新兴产业培育与当地资源禀赋的衔接,各地战略性产业集群建设加速推进。在国家政策的引导与推动下,各地区加快产业集群建设,多数省市在2022年政府工作报告中强调高端制造、医疗健康、信息技术等产业集群的重点发展布局。在其明显的示范与带动作用下,产业集群无疑为中小企业的发展指明方向。来源:各省市政府官网,艾瑞咨询研究院自主研究及绘制。各省市医疗相关产业集群发展方向省市优势产业集群重点发展&培育项目北京信息技术、健康医疗、智能制造、区块链和先进技术等人工智能、创新药、高端医疗器械、区块链、扩展现实和超高清显示等上海生物医药、人工智能等电子信息、生命健康、高端装备、先进材料等深圳专用集成电路及关键部件、数字电视软件等电子信息、先进材料、生物医药与健康、高端装备制造等武汉光电子信息、汽车及零部件、生物医药及医疗器械等网络安全、航空航天、空天信息、人工智能、数字创意、氢能等广东先进材料、生物医药与健康等高端装备制造、智能机器人、区块链与量子信息、前沿新材料、精密仪器设备等多省市强调医疗健康产业培育省市优势产业集群重点发展&培育项目浙江汽车、绿色石油化工、现代纺织、智能家居等新一代信息技术产业、生物医药和高性能医疗器械、新材料、高端装备等江苏工程机械、新型碳材料等生物医药、人工智能、信息技术应用创新、区块链等山东新一代信息技术、高端装备、医疗健康、高端化工、等先进计算、集成电路、医疗健康、新型智能终端、超高清视频等安徽新一代信息技术、装备制造、新材料等医药及医疗器械、人工智能及软件、量子信息、绿色和精细化工、先进核能、类脑智能等四川电子信息、生物医药、装备制造、新经济、特色消费品等重大装备制造、机器人、生物医药等产业集群建设为中小企业发展指明方向502023.3 iResearch I企业发展路径:闻势而上,乘势而起市场战略:自身布局结合外部支撑,快速启动目标市场在中小企业发展过程中,确定企业定位后如何低成本快速启动目标市场是企业进一步发展的重要基础。只有定位明确、布局合理,企业才能更好地组合生产、营销等各个要素,科学合理地调配企业各项资源,从而完成市场快速启动的战略目标。为确保目标市场的顺利拓展,企业需要从产品、渠道、市场、人员四个方面进行完善自我认知与战略的规划,同时辅以外围能力支撑,包括政策支持、资讯机构市场洞察、资本注入等,将宏观情况、市场情况与企业发展相结合,下活市场战略布局这盘棋,如此方能低成本快速启动目标市场,完成战略构建使命。来源:艾瑞咨询研究院自主研究及绘制。中小企业目标市场战略锚定与发展布局2134产品布局Products渠道布局Place市场布局Marketing人员布局Personnel明确产品定性,进行科学的产品细分,对接消费者需求,打好产品“组合拳”,以此进行产品布局,打开布局市场的突破口。针对企业自身及产品定位寻找合适的服务客群及销售渠道,从行业匹配度、产品匹配度、后期费效与维护等方面评估并选择合适供应商,从而让产品更快捷地进入销售与消费终端。结合企业自身的规模实力与市场定位,给以清晰的市场布局规划,集中人、财、物优化资源使用,按先后、主次进行资源投放以抢占市场。结合公司产品与业务线特点,选择有一定匹配能力的人员进行配置与布局,发挥团队整体实力,使市场在短时间内得到启动与拓展。各类资本:资本注入 提升活力政府机关:政策制定 方向引导咨询机构:市场洞察 战略参考其他:.512023.3 iResearch I企业发展路径:闻势而上,乘势而起创新研发:从无到有集成创新,加速释放研发创新生产力“专精特新”企业是自主创新的主力军,在加快推进新旧动能转换过程中发挥着重要作用。很多中小企业依然面临着较大的生存压力,如何持续创新以找寻市场机会、开拓市场仍然是他们的重中之重。因此创新能力成为中小企业实现向专精特新进化的必由之路,企业应当有志向钻研技术,逐步增加研发投入,锻造自身产品优势,攻克国家领先技术,向实现国产替代迈进。如果自身能力不够,可以从大学、市场上吸引人才,或者与机构合作购买专利,将企业单品打造成明星单品、单品龙头,再向品类龙头迈进。来源:艾瑞咨询研究院自主研究及绘制。中小企业创新能力成长路线促成因素医疗数据资产化数字化&智能化技术生态合作&科研人才公司数据的采集治理分析与应用能力、研发生产的数字化智能化升级、良好的生态合作伙伴以及重创新的企业文化与科研人才是企业埋头创新的重要内部因素,在这些能力的加持之下,企业方能深耕研发,持续创新。赋能赋能赋能助推助推助推创新能力研发投入研发效能生态合作研发费用提留机制建立研发费用提留机制,将每年销售收入的固定百分比作为研发投入。研发效率人员技能业务协同成本控制能力提升注重科研人才招纳是提升研发效能的基石。流程规范注重各板块之间的业务协同,以减少协同消耗。工具赋能利用数字化工具进行高效研发,以降低创新成本。科研创新人才科研专利技术与高校合作,定点培养人才1依托企业自身人才研发专利23自院所、机构等处购买专利企业成长集成创新看齐标准赶超巨头522023.3 iResearch I企业发展路径:闻势而上,乘势而起数字化转型:积极拥抱数字化时代,加速提升数字化能力各地在“专精特新”企业认定工作开展过程中,相应评价指标中均要求企业数字化建设达到一定水平,这为中小企业的专精特新发展指明了方向。创新型中小企业在数字化建设上将优先考虑成本与创新,先覆盖研发、生产等核心业务,在企业达到一定规模后再向联动化、集成化发展。因此现阶段中小企业数字化建设多是碎片化、模块化状态,要想冲击专精特新,企业应以现有业务数字化能力为抓手,通过数字化建设打通企业管理层、运营层、执行层的信息壁垒,逐步健全全链条数字化能力,以高效方式实现信息联动,帮助生产制造企业降本提效。来源:艾瑞咨询研究院自主研究及绘制。中小企业数字化赋能发展路径多元需求质量研发设计生产规划需求多样工序柔性用户需求分析协同研发平台智能仓储供应链协同工艺分解 工艺规划运动仿真 公差仿真智能排产虚拟生产 线路规划新型组织管理个性订单信息标识交付策略模型智能合约 智能物流发展现状类别研发生产财务.发展需求 降低成本 加强联动 保证质量 提升效率 优化资源配置 碎片化、模块化数字化建设 各系统、平台间难以形成相互联动随着定制业务的不断增加与产品更新迭代的不断加速,企业的生产管理应不断向智能化、数字化迈进,以数字化建设赋能研发到交付全流程,以提高效率、降低成本。53观局:“专精特新”概述1入局:专精特新之“小巨人”医疗企业2稳局:政府侧“专精特新”培育生态3破局:企业侧“专精特新”发展路径4拓局:投资侧“专精特新”赛道展望5542023.3 iResearch I投资风向:交替发力,持续发展短期制造业国产替代持续发力,科技创新长期赋能医疗服务在国际经济形势复杂、国内经济新常态的背景下,中国必须要从“数量追赶”转向“质量追赶”,从“规模扩张”转向“结构升级”,提高全要素生产率,实现高质量发展。因此,现阶段中小企业“专精特新”主要发展聚焦制造业,通过国产替代向制造强国转变,凭借更高质量的产业体系在新一轮产业革命中提升全球竞争力。将时间线拉长,中国医疗行业始终坚持“以人为本”的重要思想,人类在科技创新上逐步积累的力量最终能够将自身发展从“要素驱动”转向“创新驱动”,以创新科技赋能更加贴合人类生活场景的医疗服务行业。来源:科技部,艾瑞咨询研究院自主研究及绘制。医疗行业“专精特新”培育侧重点及投资风向探讨服务制造短期:制造业长期:服务业国产替代科技创新短期来看,作为推进制造强国战略的主攻方向,加速制造企业的智能化升级,变革制造业生产方式和资源组织模式,打破国外垄断,实现国产替代是专精特新企业发展的目标与方向。从长期趋势进行探讨,未来医疗科技的发展与创新将成为全流程、全业务的体系化运营支撑,全面助推医疗服务行业升级,在“以人为本”的理念驱动下,赋能人民健康照护,提供更加便捷高效的医疗服务,逐步彰显医疗社会价值。中国正处在由制造大国走向制造强国的过程中,在国际局势复杂多变的背景下,必须在硬科技、卡脖子技术等领域取得突破,因此政策推动下制造业的国产替代以提升中国在全球产业链中的地位,是短期内的重要方向。2022年我国全球创新指数排名上升至11位,成功进入创新型国家行列,科技创新成为长期发展的重要议题。科技创新能力大幅提升国产替代助力实现制造强国201020252030552023.3 iResearch I赛道展望:掘金赛道,扬帆起航医药研发:技术引领下的创新研发是医药持续发展的本源根据艾瑞预判,未来在”专精特新”企业的发展路径上,市场将更为关注处于技术跃迁中的高景气细分赛道。创新是全球医药产业发展的关键驱动力,也是中国医药产业突破现状更上一层楼的必然路径。在国家政策的鼓励下,我国创新药行业未来将持续快速发展。长远来看创新药的商业天花板够高,逐渐成熟的监管政策也将推动行业良性竞争和发展。短期来看,疫情影响走弱,多个核心品种成药的确定性逐步获得确证,创新药板块发展潜力较高。同时,创新药研发脚步的加快将有望带动CXO行业的持续繁荣。注释:高价值赛道展望根据公开资源、政府文件、专家访谈,结合艾瑞研究思考列示,仅提供行业参考。来源:国家药品监督管理局、Wind,艾瑞咨询研究院自主研究及绘制。中国“专精特新”医药研发与生产高价值赛道展望35747256867223031542856958778899512412018年2019年2020年2021年2018-2021年制药工业上市公司研发投入A股(亿元)港股(亿元) 28.34%研发费用率仍有上升空间与美股医药企业的研发费用率相比,A股和港股生物药企、化药企业的研发费用率均有增长空间。中国医药企业研发投入持续增加中国创新药研发成效显著76646989594853502018年2019年2020年2021年2018-2021年中美获批创新药数量中国(件)美国(件)上市公司研发投入持续上升2021年国内A股上市制药工业企业的研发费用达到1241亿元,其中A股672亿元,港股569亿元;2018 到2021年复合年增长率达28.34%。中国创新药获批数量持续增长2018年以来,国内历年获批的创新药数量呈增长趋势,2021年国内共有89款创新药获批,其中生物药创新药31款,化药创新药46款,中药创新药12款。中国每年获批的创新药数量已经与美国相当中美获批创新药数量相当,治疗领域具有相似性,2021年获批创新药中占比最多的均为肿瘤领域,也大多集中心血管代谢、抗感染、血液疾病领域。药物研发不断发展、监管审批要求不断变化,对于国内药企的创新药研发能力、临床试验设计能力的提升起到良好的推动作用。创新药在探索中前行 一方面,具有国际化能力的头部企业更具优势;聚焦专精特新中小企业领域,具有差异化创新能力的企业则是未来国家重点培育方向,尤其是审批集中的肿瘤、心血管、抗感染等创新药研发赛道。受益于国内医药研发行业投入的不断增加,中国CXO行业快速发展,行业整体高景气,未来成长确定性强。医药研发外包有望高速发展562023.3 iResearch I赛道展望:掘金赛道,扬帆起航医疗器械:自主可控、供应链安全的细分赛道确定性更高我国虽然是制造业大国,但是在一些核心零部件领域竞争力薄弱,主要依赖进口,在近年来贸易摩擦频发的大背景之下,国产替代将会是确定性较高的赛道。医疗器械领域中,目前低端国产医疗器械已经基本实现了国产替代。2022年境内受理的第三类医疗器械注册申请达到5425项,超越进口注册申请达到5146项,这也在一定程度上意味着在高端医疗器械方面,国产替代开始加速。从细分领域来看,除体外诊断外,无源植入器械国产替代实现程度较高。结合获批情况与融资规模,艾瑞综合推测,未来心血管、医学影像等器械将成为国产替代的核心主力,顺理成章地,这些赛道也将是专精特新的重点培育与发展方向。注释:高价值赛道展望根据公开资源、政府文件、专家访谈,结合艾瑞研究思考列示,仅提供行业参考。来源:国家药品监督管理局、众成数科,艾瑞咨询研究院自主研究及绘制。中国“专精特新”医疗器械国产替代高价值赛道展望438011583228113162168246400有源手术器械医用成像器械注射、护理和防护器械神经和心血管手术器械无源植入器械2020&2022年除体外诊断试剂外境内三类器械获批情况2022年(个)2020年(个)7.88 26.00 20.87 42.48 65.57 245.21 骨科器械AI辅助医疗医学影像医疗机器人心血管IVD2021年医疗器械细分领域融资规模2021年(亿元)细分领域探讨发展趋势探讨 低值向高值替代近年来,随着“中国制造2025”的大力推进,国家陆续出台相关政策支持国产高值医用耗材的发展;通用向专用替代从医疗过程当中通用的低价值设备与耗材逐步过渡到专业领域的专用设备,深耕专业领域以打破垄断,填补国内市场的空白;诊断向治疗替代基层医疗能力建设的推进加快了国产设备的普及,治疗设备的需求大幅增加,为械企提供了更为广阔的拓展方向。572023.3 iResearch I赛道展望:掘金赛道,扬帆起航医疗服务:需求留存、技术赋能、消费复苏成为三大主线目前来看,中国专精特新的发展仍集中在制造业领域,但基于新兴技术的不断发展以及人口医疗健康需求的增加,医疗服务行业将迎来广阔的发展。首先,需求留存上,中国人口基数较大,医疗资源大部分集中在大型三甲医院,2020-2022年出现的大规模聚集性疫情导致医院在患者收治方面压力较大,甚至对常规就诊造成挤兑风险,由此催生了在线医疗及医药电商的需求,在两年多的适应时间内,在线医疗被证实为高效便捷的医疗渠道,由此推断,互联网医疗将是未来较为确定的发展方向。其次,技术赋能上,我国医疗服务模式的转变同技术发展息息相关,5G、大数据、移动物联网、云计算等作为技术底座,支撑了大量垂直医疗场景的信息化应用,大数据与人工智能改变医疗知识发现的路径与方式,创新医疗诊断与决策的方式和渠道,物联网和云计算变革了医疗信息共享和服务模式,可预见的是,未来新一代技术将更深层次的推动医疗信息化建设。最后,消费复苏上,随着疫情对社会经济的影响逐渐趋缓,居民的消费欲望与医疗健康诉求逐步提升,消费医疗将逐渐复苏,医美、健康体检、智慧养老等消费医疗领域有望迎来一轮新的增长。注释:高价值赛道展望根据公开资源、政府文件、专家访谈,结合艾瑞研究思考列示,仅提供行业参考。来源:艾瑞咨询研究院自主研究及绘制。中国“专精特新”医疗服务高景气赛道展望医疗信息化以用户为核心消费医疗互联网医疗 发展因素:疫情期间互联网医疗发挥了重大作用,两年左右时间留存大量用户;同时政府也不断加码,打通医保、支付等互联网 医疗的关键环节,这些因素共同助力互联网医疗的高速发展;赛道展望:随着互联网医疗服务模式的逐渐成熟,市场对这一较确定定赛道的主要聚焦方向从概念转向高价值,专精特新培育也将侧重拥有优质医疗资源的互联网医疗企业。发展因素:在医院评级、智慧医院建设与医院运营管理等内外部因素驱动下,加之宏观政府层面陆续出台相关政策指导医疗信息化高效有序推进,医疗信息化市场繁荣增长;赛道展望:目前各方信息化需求仍然旺盛,尤其基层医疗主体的信息化缺口仍需长时间满足,医疗信息化将成为未来的高价值赛道。发展因素:消费医疗是与人生活最为贴近的医疗健康场景,伴随着人口老龄化、健康意识的提高,消费医疗领域迎来发展;赛道展望:伴随经济的复苏,居民对消费医疗的需求有所增加,医美、健康体检、智慧养老等细分赛道或将借此迎来新一轮发展。58艾瑞新经济产业研究解决方案行业咨询投资研究市 场 进 入竞 争 策 略IPO行业顾问募投商业尽职调查投后战略咨询为企业提供市场进入机会扫描,可行性分析及路径规划为企业提供竞争策略制定,帮助企业构建长期竞争壁垒为企业提供上市招股书编撰及相关工作流程中的行业顾问服务为企业提供融资、上市中的募投报告撰写及咨询服务为投资机构提供拟投标的所在行业的基本面研究、标的项目的机会收益风险等方面的深度调查为投资机构提供投后项目的跟踪评估,包括盈利能力、风险情况、行业竞对表现、未来战略等方向。协助投资机构为投后项目公司的长期经营增长提供咨询服务59艾瑞咨询是中国新经济与产业数字化洞察研究咨询服务领域的领导品牌,为客户提供专业的行业分析、数据洞察、市场研究、战略咨询及数字化解决方案,助力客户提升认知水平、盈利能力和综合竞争力。自2002年成立至今,累计发布超过3000份行业研究报告,在互联网、新经济领域的研究覆盖能力处于行业领先水平。如今,艾瑞咨询一直致力于通过科技与数据手段,并结合外部数据、客户反馈数据、内部运营数据等全域数据的收集与分析,提升客户的商业决策效率。并通过系统的数字产业、产业数据化研究及全面的供应商选择,帮助客户制定数字化战略以及落地数字化解决方案,提升客户运营效率。未来,艾瑞咨询将持续深耕商业决策服务领域,致力于成为解决商业决策问题的顶级服务机构。关于艾瑞400-026-联系我们 Contact Us企 业 微 信微 信 公 众 号60法律声明版权声明本报告为艾瑞咨询制作,其版权归属艾瑞咨询,没有经过艾瑞咨询的书面许可,任何组织和个人不得以任何形式复制、传播或输出中华人民共和国境外。任何未经授权使用本报告的相关商业行为都将违反中华人民共和国著作权法和其他法律法规以及有关国际公约的规定。免责条款本报告中行业数据及相关市场预测主要为公司研究员采用桌面研究、行业访谈、市场调查及其他研究方法,部分文字和数据采集于公开信息,并且结合艾瑞监测产品数据,通过艾瑞统计预测模型估算获得;企业数据主要为访谈获得,艾瑞咨询对该等信息的准确性、完整性或可靠性作尽最大努力的追求,但不作任何保证。在任何情况下,本报告中的信息或所表述的观点均不构成任何建议。本报告中发布的调研数据采用样本调研方法,其数据结果受到样本的影响。由于调研方法及样本的限制,调查资料收集范围的限制,该数据仅代表调研时间和人群的基本状况,仅服务于当前的调研目的,为市场和客户提供基本参考。受研究方法和数据获取资源的限制,本报告只提供给用户作为市场参考资料,本公司对该报告的数据和观点不承担法律责任。61
104人已浏览
2023-03-29 61页
5星级
数据运营全流程手册数据运营全流程手册数据运营全流程手册数据运营全流程手册前言数据,在企业的经营和发展中发挥着越来越重要的作用。纵观近些年短时间内快速崛起的各行业头部企业、新兴独角兽,无一不是重视数据、运营数据的结果。由此,数据运营的相关岗位相继出现,数据运营的能力也愈发备受重视。未来已来,随着数字技术的发展和企业数据素养的提升,企业和品牌的核心竞争力将进一步集中在数字用户资产的沉淀与经营。只有真正掌握数据运营的能力,企业才能将业务数据化、数字资产化、资产业务化,沉淀数字用户资产,最大化每一个用户的价值。那么,现阶段的企业,以及企业内部的运营人员如何通过科学的方法和系统的流程,落地数据运营呢?易观方舟联合观远数据,结合服务过众多行业头部客户的经验,推出数据运营全流程手册。数据运营全流程手册以“理数-收数-看数-用数”这一数据运营闭环为整体框架,从运营而非技术人员的视角,通俗易懂地介绍了数据运营闭环的各环节是什么、有什么作用、以及具体应该如何落地。该电子书不仅对数据运营闭环进行全面解析,还梳理出一套可快速落地的数据指标体系搭建框架(OSM 模型 ARGO 模型 金字塔原则),以及总结出 11 大常用的数据分析模型,并拆解幸福西饼、蜜雪冰城、九阳胶囊豆浆机 Onecup 这三家企业的数据运营实战案例,旨在帮助企业及企业内的运营人员低门槛、高效率地落地数据运营,实现数据驱动精益成长。数据运营全流程手册数据运营全流程手册11.认识数据运营随着数据正式成为继土地、劳动力、资本、技术后的第五大生产要素,其在当今社会扮演的角色地位不言而喻。对于企业来说,在日常经营的过程中,各个环节、各个流程、各个部门等都在产生着各种各样的数据。数据也已经成为企业在进行运营策略、产品规划、品牌战略等几乎所有经营活动时,不可或缺的信息来源和参考依据。如果把企业比作舵手,数据就是导航。能正确应用导航的舵手,将率先到达目的地;同样,能正确应用数据的企业,也将在商业竞争中建立起自己的核心竞争力。那么,将企业的各种数据采集起来,并正确应用于企业各种经营活动的过程,便是数据运营。1.1 狭义的数据运营狭义的数据运营,仅仅把数据运营看作企业中的某个岗位。但不可否认的是,数据运营岗位正在成为企业中举足轻重的岗位。与数据分析师不同,数据运营对编程能力的要求较低,但更接近和了解一线业务。大部分数据运营通常都与一线业务人员在同一个部门,以更好地辅助业务决策,用数据驱动精益成长。为了方便大家更好地了解数据运营这一职能岗位,我们从众多 JD(JobDescription,岗位职责描述)中选取了比较有代表性的工作经验在 1-3 年、3-5年、5-10 年的数据运营 JD(见图 1-1)。数据运营全流程手册2图 1-1 不同年限数据运营 JD 示例不难发现,数据运营是一项围绕数据进行各种工作的岗位,从收集各部门的数据需求、采集数据、分析数据,到搭建数据报表、监测数据动态、产出数据报告,再到通过数据驱动经营决策、给出战略建议。越往后对数据运营各项能力的要求越高。一名优秀的数据运营不仅需要灵活使用各种数据工具,还需要变通应用各种数据分析方法,并且能够在第一时间发现问题、定位问题、并与业务同学共同快速找到解决问题的方法。1.2 广义的数据运营广义的数据运营,不仅仅把数据运营看作企业中的某个岗位,而是企业中的每一个岗位以及企业自身需要具备的一种能力。对于企业中的每一个岗位,数据运营的能力几乎作用在我们在日常工作中的方方面面,例如,通过数据证明自己的工作价值、通过数据发现工作问题并解决问题、通过数据提升工作效率并驱动业绩增长。掌握数据运营的能力,对每一个岗位来说都无异于“锦上添花”,甚至是“雪中送炭”。数据运营全流程手册3对于企业自身,掌握了数据运营的能力,才能将用户沉淀为数字用户资产这一数字化时代下,企业的核心资产。数字用户资产的沉淀在企业中一般会经历三个阶段(见图 1-2):图 1-2 数字用户资产的三个阶段 阶段一:业务数据化。这是当前绝大多数企业所处的阶段,企业只有在这个阶段与用户建立起全面的数字触点,并在这些数字触点之上进一步承载业务的发展,才能进化到下一个阶段;阶段二:数据资产化。在这个阶段的企业,能对不同用户,基于属性、习惯、场景等因素打上不同的标签,生成单个&群体用户画像,并能对用户进行精细运营、个性运营、精准运营;阶段三:资产业务化。将所有数字用户资产进行货币化,使资产能够通过某种形式来获利。例如,拼多多就是非常典型的将用户实现资产化的范例,拼多多的用户通过分享,可以买到最便宜的商品。数据运营全流程手册4根据易观对国内行业的观察,目前国内走到数据资产化阶段的企业不超过3%,走到资产业务化阶段的企业更是凤毛麟角。对于企业而言,如何经营好数字用户资产,如何最大化每一份资产中的价值,仍然是当下的核心命题。1.3 数据运营闭环:理数、收数、看数、用数不管是狭义的数据运营岗位,还是广义的企业中每个岗位以及企业自身需要具备的数据运营能力,都需要科学的方法和系统的流程来落地数据运营。为此,易观方舟提出数据运营闭环(见图 1-3),包括理数、收数、看数、用数四个环节。图 1-3 数据运营闭环先通过“理数”梳理清楚目前业务所需的指标,并搭建数据指标体系,为高效“收数”做好准备。本电子书的第 2 章将系统介绍“理数”的四个步骤:梳理数据指标、明确北极星指标、定义指标口径、搭建指标体系。其中OSM 模型 ARGO 模型 金字塔原则指标体系搭建的整体框架,将带你系统搭建适用于具体业务场景的指标体系。“收数”包括数据采集、数据存储与数据打通,该环节收数的好坏将直接决定数据运营全流程手册5后两个环节能否正确进行。本电子书的第 3 章将系统介绍数据采集的原理,并总结目前主流的三种埋点方式:代码埋点、全埋点、可视化埋点,具体如何实现以及各自的优缺点。此外,还将带你梳理埋点需求、设计埋点方案。“看数”主要指将数据可视化呈现,并通过搭建数据看报/报表,进行数据洞察和数据分析,为“用数”做好准备。本电子书的第 4 章,我们邀请到观远数据为大家以专业的视角阐述数据可视化的内容。此外,还将系统介绍数据分析的类型和方法,并分享常用的 11 大数据分析模型。“用数”体现在企业各种经营活动的各个环节。本电子书的第 5 章将着重介绍数据驱动产品迭代、Workflow(自动化工作流)助力精细化运营、“量质转化点“提升用户留存,并在第 6 章以幸福西饼、蜜雪冰城、九阳胶囊豆浆机Onecup 为案例,拆解其数据运营如何在企业内具体应用和发挥作用。数据运营全流程手册6数据运营全流程手册62.理数2.1 梳理数据指标指标又称度量,是量化衡量的标准。例如,衡量 APP 基础运营情况的指标有:活跃用户数、使用时长、打开次数等;衡量用户留存情况的指标有:次日留存率、留存用户数等。我们可以将数据指标分为五大类:拉新指标、活跃指标、留存指标、转化指标、传播指标。|拉新指标对任何一款产品来说,都不可避免地要经历从触达下载注册用户的链路转化过程。在这个过程中,我们需要关注哪些拉新指标呢?浏览量:又称曝光量,指产品推广信息在朋友圈、搜索引擎、应用商店等渠道被用户浏览的次数。与浏览量相对应的是点击量,点击量与浏览量之比即为CTR(CTR=点击量/浏览量),CTR 常被广告平台用来评估广告质量;下载量:根据业务的不同,可能代表 APP 安装次数、资料下载数等,是衡量拉新效果的结果指标;新增用户:下载并不意味着就是用户,如果用户只下载并没有注册,那就是无效用户。每个产品对于用户的界定都不一样,大部分产品是将用户注册 APP 行为定义为新增用户;获取成本:用户获取必然涉及成本,而这是运营新手最容易忽略的。目前常见的成本计算方式有 CPM(Cost Per Mille,千人展现成本)、CPC(Cost PerClick,单次点击成本)、CPA(Cost Per Action,单次获客成本)。数据运营全流程手册7|活跃指标在人口红利逐渐消退的情况下,相较于下载量和用户量,大家更关注你到底有多少活跃用户?活跃用户数:DAU(Daily Active Users)指日活跃用户数,一般指在 24小时内活跃用户的总量;以此类推还有 WAU(Weekly Active Users,周活跃用户数)、MAU(Monthly Active Users,月活跃用户数)等指标;活跃率:活跃用户数衡量的是产品的市场体量,活跃率看的则是产品的健康;在线时长:不同产品类型的访问时长不同,一般情况下社交类产品长于工具类产品,内容产品长于金融理财产品;启动次数:该指标体现的是用户使用频率,日均启动次数越多说明用户对产品的依赖性越高,活跃度也就越好;页面浏览量:简称 PV(Page View),常见的 UV(Unique Visitor)则是指一定时间内访问网页的人数,用户在 1 个网页的访问请求即为 1PV,以此类推10 个网页即为 10PV。|留存指标如果说活跃数和活跃率衡量的是产品的市场体量和健康程度,那么用户留存衡量的则是产品是否能够可持续发展,对于早期产品来说其实更应该关注留存指标。用户留存率:留存率=留存用户数/总用户量;用户流失率:流失率在一定程度能预测产品的发展。假定产品某阶段有 10万用户,月流失率为 20%,几个月后产品用户将流失殆尽。数据运营全流程手册8|转化指标对运营而言,拉新、活跃和留存都只是手段,最终衡量工作业绩的是带来真正价值的用户数量。GMV:GMV 全称 Gross Merchandise Volume,即商品交易总额,是指一定时间段内商品的成交总额;成交额:指的是用户付款的实际流水,是用户购买后的消费金额;销售收入:指的是成交金额减去退款后的剩余金额;付费用户量:在产品里边产生过交易行为的用户总量,同活跃用户一样,交易用户也可分为首单用户(第一次消费)、忠诚消费用户(持续购买的用户)、流失消费用户(流失后又回来的用户)等;ARPU:ARPU(Average Revenue Per User,每用户平均收入)=总收入收费用户数;复购率:和新增用户一样,获取 1 个新付费用户的成本远远高于维护 1 个熟客的成本。复购率更多用在整体重复购买次数统计,即单位时间内消费 2 次以上的用户数占购买总用户数的比例。|传播指标现在大多产品都会内嵌分享功能,对于内容型平台或者依赖传播做增长的产品,病毒式增长的传播指标衡量至关重要。病毒 K 因子:K 因子大于 1 时,每位用户至少能带来 1 个新用户,用户量像滚雪球般越变越大,最终实现自传播;传播周期:指的是用户从传播到转化新用户所需要的时间,通常传播周期越短,意味着用户裂变传播的效果越好。数据运营全流程手册92.2 明确北极星指标梳理完数据指标后,我们还需要找到最能指导业务增长的核心关键指标,即北极星指标。Facebook 以“月活跃用户数(MAU)”作为北极星指标,击败了当时以“注册用户数”作为北极星指标的美国社交网络巨头 MySpace,成为了目前世界上最大的社交平台;LinkedIn 为“优质的活跃用户数”制定了 4 个维度的标准,并将其定为全公司为之共同努力的北极星指标,成为了目前世界上最大的职场社交平台;Airbnb 以“总预定天数”作为北极星指标,不断优化房东与租房者之间的连接,成为了目前世界上最大的“酒店”.看似一个小小的指标,正应了我们的一句古话“方向对了,就不怕路远”。再小的创业公司,只要方向对了,然后整个公司朝着一个共同目标共同努力,也能“摇身一变”成为世界级明星公司。|认识北极星指标什么是北极星指标?北极星指标(NSM,North Star Metric),又被称为唯一重要指标(OMTM,One Metric That Matters)。北极星指标是衡量产品、业务成功与否的关键指标,它体现了产品试图解决的“用户需求与企业经营”之间的关系,是一经确定后企业所有人都需要为之共同努力的唯一重要指标。在实际业务中,北极星指标的创建就是为了使组织对特定目标进行特殊关注。每个人都可以始终根据是否通过该指标来推动公司的发展来定义成功,而不必被日常事务或单个项目所困扰。正如 GrowthHackers 创始人&增长黑客之父 SeanEllis 所说:“北极星指标是最能体现产品为客户提供核心价值的单一指标。我们应该用最大限度的努力来增长该指标,因为这是企业在整个客户群中实现可持续增长的关键”。数据运营全流程手册10具体而言,北极星指标主要有以下 3 个核心作用:使整个公司了解产品团队的行动,并令其与公司营收目标一致,综合内部资源集中进行推进,进而提升协作效率;将产品团队的进展和效果传达给其他部门,获取更多支持,以加速战略产品计划,避免目标不同影响沟通效率;最重要的是让产品团队对结果负责,真正制定可落地的产品行动策略,推进北极星指标达成。企业的北极星指标一旦确定之后,它就会像“北极星”一样指引公司内的所有人,朝同一个方向迈进。因此,我们在选择北极星指标的时候要十分谨慎。例如,收入通常并不能特别说明公司的发展前景,而且可能很容易将其用于冲击短期增长,却带来了长期负面的影响,所以有时选择一个无收入的指标会更有益。|选择北极星指标的 3 个标准那么,要如何在众多重要数据指标中找寻到北极星指标呢?以下有 3 大标准:标准一:所选择的指标是否有助于业务发展电视剧创业时代演绎了中国移动互联网发展初期阶段,无论是语音通讯软件魔晶还是移动邮件应用狐邮的上线,为了满足各方的要求,都以应用商店的下载量作为对标的评价标准。而下载量这个指标可能更像是一个虚荣指标,因为对很多移动 APP 来说,产品的实际活跃用户数要优于累计下载数,因为活跃数反映的是当期用户的实际情况,而下载量只能反映总体量,却无法清晰且有效地定义当前状况。通过使用北极星指标作为业务发展进度的一致度量,可以根据每个活动是否在数据运营全流程手册11推进北极星指标来衡量每个活动。如果一个项目、功能或计划不能改善北极星指标,则其价值必须被质疑,并且可能因缺乏与业务发展的相关性而被放弃。标准二:所选择的指标是否能体现核心价值对内容型产品而言,用户对于内容社区的参与度,比如内容消费数量和内容生产数量要优于产品注册用户数,因为只有内容消费和内容生产才能确切反映:产品是否为用户提供了核心价值?用户是否愿意花更多时间在社区上?例如,对于问答社区知乎或者百度知道来说,单纯关注用户注册数或者活跃用户数,并不能反映平台内容的丰富程度及用户使用粘性,所以将问题回答数作为关键指标更能体现产品价值。标准三:所选择的指标是否具备可操作性定量指标优于定性指标。就制定产品指标而言,如果是提升产品体验,则不够具体,团队内每个人的理解可能都不一样;如果是产品使用时长至 15 分钟的人数,就非常具体了,每个人都清楚最终的目标是多少。在具体的操作性层面,我们可以将这个指标拆解成 4 个具体维度:(1)简单:可以是具体数字;(2)即时:业务部门能够实时看到数据更新;(3)可行动:具体可执行的,或者说能够改善的;(4)可比较:支持纵向和过去对比,横向和竞对比较。从以上可以看到,北极星指标与运营策略之间的匹配尤为重要。一般情况下,先导性指标(预测未来)要优于后验性指标(解释过去)。如果你想用自己的北极星指标来衡量产品成功与否,但北极星指标并不能够体现用户使用产品的真正价值,那就极有可能变成虚荣性指标。这时候选择的运营策略就会优化“错误的指标”,最终导致错误的结果。|北极星指标应用案例数据运营全流程手册12北极星指标通常会精简为一个可衡量的数字,但它会随着产品的发展阶段而改变。以用户生命周期为例,早期产品较为靠前,会更重视新增用户数和注册用户数;成熟产品较为靠后,会更偏向活跃用户数和转化用户数。不同行业和领域,北极星指标的确立也会有很大的差异。例如,对于订阅式收费的 SaaS 行业来说,可能会有已经是付费客户但已经停止使用产品的情况。在这种情况下,使用“每周活跃用户”而不是“每月经常性收入(MonthlyRecurring Revenue)”,这将确保 SaaS 企业专注于用户参与度,这会比营收领先一步。像硅谷知名的独角兽数据分析企业 Amplitude 的北极星指标,就是“每周至少运行一次查询的用户数”,即 Weekly Querying Users(WQUs)。例如,对于互联网社交平台而言,活跃用户数显得尤为重要。像 LinkedIn 的北极星指标就是“活跃的优质用户”,并对该指标的定义分成 4 个维度:(1)资料完整度,每完成一项用户资料就会加几分;(2)好友数,职场好友数达到 30人,是活跃度的一个拐点;(3)可触达,猎头是否可以直接联系到你;(4)保持活跃,一段时间内登录使用过多少次。为了帮助大家更好的找到属于自己的北极星指标,我们罗列了一些国内外知名企业的北极星指标(见图 2-1),供大家参考:图 2-1 国内外知名企业的北极星指标数据运营全流程手册13公司内可能有各种各样的核心指标,但北极星指标只有一个,应该适当聚焦做减法。当然,没有最好的指标只有更好的指标,北极星指标的确立也是一个逐渐优化的过程。2.3 定义指标口径在明确了北极星指标后,还有一项非常重要的工作定义数据指标口径。都说“数据指标口径是一个任人打扮的小姑娘”,我们都习惯于往有利于自己的模样“打扮”。像 GMV 这一指标,我们可以根据不同的统计口径,得到不同的统计数据。阿里巴巴对 GMV 的定义是“所有已确认的订单”。与常规理解不同,阿里巴巴的“已确认”包括了销售额、取消订单金额、拒收订单金额和退货订单金额;京东对 GMV 的定义是,京东集团线上自营业务和第三方平台所有产品和服务订单的全部订单金额。且无论该商品是否完成销售,投递或者被退回。在数据运营的过程中,我们如果没有统一的工具(例如易观方舟,点此可免费体验)管理数据指标口径,往往会出现以下问题:在不同的数据报表中,出现定义一致但名称不一样的数据指标;在相同的数据报表中,出现定义不一致但名称一样的数据指标。这将对我们跨部门协同开展运营工作、达成运营目标带来一定的困扰。如果在需求上线前事先没有做好数据指标口径的定义,就会导致某些数据对不上,给测试、技术等人员带去一定程度返工,大大降低工作效率。例如,对于一个企业来说,活跃用户往往反映了产品的用户规模、所处发展阶段,通过活跃用户可以快速定位产品人群,为后续拉新、促活做充分准备。我们在衡量用户活跃时,常用的指标有每日活跃用户数(Daily Active User)、每周活跃数据运营全流程手册14用户数(Weekly Active User)、每月活跃用户数(Monthly Active User),分别指每日/周/月访问产品的不同用户数。但活跃用户数这个数据指标口径的定义,由于所处的行业、不同的业务等因素,很多企业会根据自身特点对活跃用户数有不同的定义,例如:每日登录用户数(过滤掉匿名用户)即为活跃用户数;每日在线时长超过 5 分钟的用户数(过滤掉低质量用户)即为活跃用户数;每日访问页面超过 5 个的用户数(过滤掉低质量用户)即为活跃用户数。因此,数据指标口径的定义应该尽量做到明确、清晰、易懂,并需要逐步迭代建立起一套完整的数据指标口径字典,下发到各个协作部门,确保对数据指标的认知达成一致,避免在运营过程中出现歧义。2.4 搭建指标体系:OSM 模型 ARGO 模型 金字塔原则一套好的指标体系能够实时监控运营过程中发生的正负反馈变化,并能迅速定位问题所在,还能一定程度上指导我们解决问题。但就像天下没有两片相同的叶子,也没有完全相同的两套指标体系。产品类型不同、产品发展阶段不同、运营团队思考方式不同等,都会导致搭建的指标体系有所差异。不过,指标体系搭建的基本思路和方法是有迹可循的。易观方舟结合服务过上百家客户的经验,总结出搭建指标体系的OSM 模型 ARGO 模型 金字塔模型整体框架(见图 2-2),希望能够帮助大家系统搭建适合自身业务的指标体系。数据运营全流程手册15图 2-2 搭建指标体系搭建的整体框架|OSM 模型:确定指标体系的“骨架”OSM模 型 由 目 标(Objective)、策 略(Strategy)、度 量(Measurement)组成,通过将宏大的运营目标逐一拆解,对应到可落地的运营策略和可度量的运营动作上,从而确保我们梳理指标时不会偏离“主航道”。定义目标目标可能是整个企业、某条产品线、或者某个运营小组的运营目标,其在不同的行业领域以及公司或产品的不同发展阶段都是不一样的,需要我们结合自身的实际情况,定义目标。一般情况下,运营目标与核心 KPI 息息相关。例如:电商平台的目的是让用户在平台上完成更多交易,那么平台运营负责人的目标就可能是提高 GMV;ToB企业服务类网站希望可以获得更多的注册线索,那么网站运营的目标就可能是提高注册试用量;银行类 APP 希望可以让更多用户来购买理财产品,那么 APP 运营的目标就可能是提高理财产品的购买总金额。确定策略通过定义目标了解整个运营大方向后,我们便可以根据过往的经验、市场调研等制定达成运营目标所需要的策略。数据运营全流程手册16例如,电商平台运营负责人的目标是提高 GMV。按照 GMV=支付用户数 X每笔单价 X 用户购买频次的计算公式(注:GMV 的公式根据行业可能有所不同,需结合自身业务计算),其提升策略可能就会有:针对提升支付用户数的策略对新注册用户进行 9.9 元限时特价活动、针对提升每笔单价的策略进行商品组合销售、针对提升用户购买频次的策略节假日进行优惠券营销。明确度量策略制定后,如何衡量策略执行的效果?如何反映该策略是否有助于目标达成?这就需要用到度量。例如,通过商品组合销售策略,需要将每笔单价提升至 1000 元。这个将每笔单价提升至 1000 元就是该策略的度量。我们所制定的每一个策略都需要匹配相应的度量指标。综上,我们便可以根据 OSM 模型,形成指标体系初步的“骨架”(见图 2-3)。图 2-3 OSM 模型示意图数据运营全流程手册17|ARGO 模型:填充指标体系的“血肉”ARGO 模型(见图 2-4)由易观方舟基于“留量”时代提出,为解决用户运营的具体业务挑战而设计,帮助企业围绕用户全生命周期,更系统地制定运营目标及对应策略。图 2-4 ARGO 模型根据 ARGO 模型,我们可以分别从用户视角和企业视角(见图 2-5),进行运营目标和运营策略的设计,从而避免根据 OSM 模型梳理指标体系时有所遗漏。图 2-5 用户视角和企业视角的 ARGO 模型图(1)用户视角数据运营全流程手册18当用户从欢迎页到传播分享,会经历一个完整的用户全生命周期(见图 2-6)。图 2-6 基于 ARGO 模型的用户全生命周期虽然我们在运营过程中都希望用户尽可能参与到运营中来,也希望用户尽可能多次回访到产品中去。但并不是所有用户都会经历完整的用户全生命周期,因为在任意一个环节用户都可能会流失。但无论是什么类型的产品,都有一组典型的用户全生命周期,即从潜在用户(潜客)、新增用户(新客)、活跃用户(活客)、成熟用户(老客)、衰退用户(怨客)、沉默用户(睡客)、流失用户(死客)的全过程。以新增用户为例,这时用户处在刚与产品接触的阶段,即包括从外部的流量渠道到达网站、APP、小程序等的全部用户数量,多用于新用户获取阶段,表示可以转化成用户的最大值。如果是网站就与 UV 相关,如果是 APP 就与启动相关。提升新增用户量,是我们在这个用户生命周期阶段的主要目标。在这个阶段,我们通常需要知道固定时间内到达产品的访客构成。这时候就会涉及到流量渠道,了解不同渠道的用户构成状态有助于我们进行渠道优化、改善访客质量。(2)企业视角企业视角对应业务成长的需求,可以分为以下三个阶段(见图 2-7):数据运营全流程手册19图 2-7 基于 ARGO 模型的企业业务成长需求 获客转化阶段,需要我们通过不同的渠道和方式获取客户,并引导用户转化。借助该阶段沉淀的用户关键数据,准确定义产品目标人群特征,优化运营的获客转化策略;活客粘客阶段,需要我们让用户形成使用习惯,为不同用户群体提供个性化的最佳体验,并及时定位流失原因,唤醒沉睡用户和召回流失用户,提升用户留存率和忠诚度,促进用户活跃;创造价值阶段,需要我们引导用户进行产品价值交换,关注不同运营活动、触达策略等与价值交换的关联度,实现用户 LTV(Life Time Value,生命周期总价值)的最大化。根据用户视角或者企业视角系统梳理运营目标后,就可以开始寻找不同场景下用户与我们的接触点,然后通过数据分析找到每个接触点上的待优化点。这些待优化点就可以作为我们 OSM 模型中的策略。例如,用户进入欢迎页时、进行注册时、开展新手任务时,与我们的接触点分别是产品欢迎页面、产品注册页面、新手任务引导流程页面。通过数据分析发现注册页面的转化率偏低,那么我们就要针对注册转化提升制定相应的策略。由此,不难发现,ARGO 模型是在 OSM 模型搭建好指标体系初步的“骨架”后,用来填充指标体系的“血肉”,可以让整个指标体系更丰富。如下图所示,以企业视角为例,将 ARGO 模型与 OSM 模型相结合(见图2-8),就可以帮助我们校准目标是否与用户全生命周期的每个阶段相匹配,以及检验策略是否覆盖了用户全生命周期、有无遗漏。数据运营全流程手册20图 2-8 基于 ARGO 模型和 OSM 模型的企业指标体系搭建|金字塔原则:打通指标体系的“经脉”金字塔原则源于世界级领先的管理咨询公司麦肯锡,通常被用来结构化写作过程。但其层次性、框架性、系统性的思考方式,也同样可以帮助我们梳理指标体系。在易观方舟服务客户的过程中,我们发现光有 OSM 模型确定指标体系大的框架,ARGO 模型帮助填充指标体系小的细节,往往是不够的。还需要用金字塔原则整体梳理,让整个指标体系具有上层概括下层、同层独立穷尽的逻辑自洽性。(1)上层概括下层通过 OSM 模型和 ARGO 模型搭建的指标体系一般包含第一关键指标、一级指标、二级指标等层级关系(见图 2-9)。在层级关系上,上一层的指标要能概括下一层级的指标。数据运营全流程手册21图 2-9 指标体系上下层关系图 第一关键指标第一关键指标又称北极星指标,当我们开始对一款产品(网站、APP、小程序、智能硬件等)进行运营时,会涉及到很多指标,但只有一个最重要的核心指标才能被称为第一关键指标。第一关键指标的特点就是与目标直接相关,我们的工作围绕着推动第一关键指标的数据变化而展开,这些数据变化也会帮助我们达成目标。例如网站每天的新注册用户数量,是与我们的目标实现新用户获取息息相关的,就可以将注册用户数作为其第一关键指标。需要注意的是,第一关键指标虽然是最重要的,但也并不是唯一的,比如电商网站,我们关注订单量的同时也需关注新用户注册量;而且第一关键指标也不是恒定的,会随着业务变化而改变,比如产品早期最关注的是拉新,当积累了大量用户后要提高对用户留存的关注程度,这时候第一关键指标可能是周用户活跃(WAU)或月用户活跃(MAU)。如何判断一个指标是不是第一关键指标?有一条判断标准就是:如果我们改善数据运营全流程手册22这个指标,产品的长期业绩是否被提高?一级指标一级指标是指对第一关键指标有直接贡献的,且与目标方向一致的系列指标。第一关键指标要能概括所有的一级指标。例如,企业服务网站的第一关键指标是注册数量。那么,一级指标就可能是表单页到访客数量,因为提高表单页访客数量可以直接提高最终的注册数量;一级指标也可能是表单页访客到注册成功的转化率,因为提高表单页访客到注册成功的转化率可以直接提高注册数量。二级指标二级指标是指对一级指标有直接贡献的,且与目标方向一致的系列指标。一级指标要能概括属于自己分支的所有二级指标。例如,企业服务网站的一级指标是表单页访客到注册成功的转化率,二级指标就可能是第一个字段完成验证的次数。因为在同样的访客数量情况下,第一个字段完成得越多,表单页访客到注册成功的转化率就越高。我们可以制定多层级的指标体系,但最好还是尽可能精简。根据易观方舟服务客户的经验,指标体系层级最好控制在 3-5 层。简约可控的指标体系可以让我们聚焦精力在更重要的策略执行上。需要强调的一点是:制定的每一级指标体系都是要对其上一级指标有直接贡献的。(2)同层独立穷尽在指标体系中,除了不同层上需要满足上层概括下层外,同层上还需要满足独立穷尽,又称 MECE 原则。MECE 原则要求处在同一层级的指标互相之间完全独立(Mutually Exclusive)且互相穷尽(Collectively Exhaustive)。数据运营全流程手册23以处在同层的二级指标 1.1、二级指标 1.2、二级指标 1.3 为例(见图 2-10)。图左就是符合 MECE 原则的,图中和图右就不符合,但却是我们在梳理同层指标中比较容易犯的错误。图 2-10 指标体系同层关系图通过 MECE 原则梳理过的指标体系,往往能够快速定位运营过程中出现的问题。综上,通过搭建指标体系的OSM 模型 ARGO 模型 金字塔原则整体框架(见图 2-11),我们便可以快速地搭建起一套适合自身业务的指标体系。图 2-11 指标体系整体框架数据运营全流程手册数据运营全流程手册243.收数3.1 埋点采集数据说到“收数”便离不开数据采集,说到数据采集便离不开埋点。埋点是指在应用的特定流程中,通过技术手段收集用户发生的行为信息,从而通过后续分析手段还原用户场景,以指导产品功能改进、验证客户服务质量等。针对目前移动互联网时代的应用,从用户行为的形式划分,常见的有:浏览页面、点击按钮、手势滑动、长按等;或从功能划分,常见的有:验证行为、交易行为、加入清单、搜索等功能行为。针对不同行为的埋点采集,从埋点在应用中的位置也可以分成客户端埋点、服务端埋点等;从实现手段上划分,可分为:代码埋点、全埋点、可视化埋点等(见图 3-1)。图 3-1 不同埋点方式划分互联网产品在研发时往往不会专门记录用户身份和行为数据,也不会包含专业的数据分析功能。但有时为了分析用户产生某些动作或不产生某些动作的深层原数据运营全流程手册25因,就需要详细的用户数据进行分析。这个时候就需要用到专业的用户分析工具以及埋点(例如易观方舟,点此免费体验)。数据获取是任何一个数据平台的起始动作。对于互联网产品来说,用户行为的捕捉及获取是重中之重。如果没有准确、全面的用户身份和行为数据作为输入,在后续分析中得到准确洞察结果就会存在不确定性,营销闭环也会缺少过程数据依据,精细化运营更难以开展。|埋点原理对基于用户行为的数据平台来说,发生在用户界面的,能获取用户信息的触点就是用户数据的直接来源,而建立这些触点的方式就是埋点。当这些触点获取到用户行为、身份数据后,会通过网络传输到服务器端进行后续处理。埋点从准确性角度考虑,分为客户端埋点和服务端埋点。客户端埋点,即客户操作界面中,在客户产生动作时对用户行为进行记录,这些行为只会在客户端发生,不会传输到服务器端;服务端埋点,通常是在程序和数据库交互的界面进行埋点,这时的埋点会更准确地记录数据的改变,同时也会减小由于网络传输等原因而带来的不确定性风险。从分析的角度出发,数据越准确、越全面就越能达到理想状态;但在实际生产过程中却不得不考虑数据获取可行性等问题。由于数据分析工具的最终用户可能是企业内部的各种角色,如工程师、产品运营、市场甚至其他业务人员;大家会在不同时间、不同产品模块,以不同规则向产品中注入自己关心的采集代码。遵循传统方式,常见工作流程如下(见图 3-2):数据运营全流程手册26图 3-2 埋点常见工作流程团队内部还会使用 Excel 表格来搜集各个团队的埋点需求,然后再交给工程师。实际上,即使是赫赫有名的数据分析服务商 Mixpanel,在很长一段时间内也只能将这种工作流程作为所建议的最佳实践,甚至不得不花篇幅在文档中心提供了几种不同风格的文档,以此帮助大家熟悉这种工作流程。|传统埋点的不足一遍又一遍的迭代,使行为采集和埋点管理这两个动作构成了上图中的工作流闭环,但这个闭环却存在几个明显的弊端。因此,在实际工作中传统埋点存在很多不足之处,例如:人力成本增加,即需要投入对业务和技术都具备一定专业水平的人专门负责;沟通成本增加,即前期需要同多方协作;犯错成本增加,即发现错漏无法快速事后补救;管理成本增加高,即跨版本后,废点会造成代码垃圾也会影响性能。实际工作过程中,部分企业一方面强调数据获取的重要性,另一方面却依然没有真正把重心投入进来。对行业从业者来说,数据获取及管理,从来不是一个做到数据运营全流程手册27某种程度就够用的问题,而是只要数据业务还在发展就要不断通过自行迭代去探索更好的获取及管理方式。今天,企业在数据采集上面临的主要业务挑战有:(1)缺乏专业数据采集工具,自研难度、成本高、易用性不够;(2)缺乏数据采集经验,数据采集覆盖面不全、粒度无法满足自身业务要求;(3)数据获取实时性不够,数据采集到业务可用的时效不确定,多端数据采集不规范;(4)缺乏统一的数据管理与数据加密方案,数据维护成本高。作为新一代的用户行为数据分析工具,易观方舟智能用户运营平台支持自定义多维度、实时用户分析以及全端数据采集。全端用户行为数据采集能力,是易观方舟区别于前两代用户行为数据分析工具的重要差异。针对目前企业在数据采集上的困境,易观方舟智能用户运营平台的数据采集(见图 3-3)实现了:(1)一键式接入,可视化埋点、全埋点、0 成本完成全域数据采集;(2)22 种 SDK 明细粒度数据采集,支持属性可配置;(3)通用数据模型,数据采集即可用,迈出用户数据治理第一步;(4)上报数据支持默认加密与自定义加密,让企业数据更安全。数据运营全流程手册28图 3-3 易观方舟客户端 SDK 和服务端 SDK3.2 主流埋点方式:代码埋点、全埋点和可视化埋点在了解传统埋点方式的不足之后,我们将给大家详细介绍市面上 3 种主流的埋点:代码埋点、全埋点和可视化埋点。下面,将围绕不同埋点方式的优缺点及其适用常见场景进行展开。|代码埋点代码埋点(见图 3-4)是帮助工程师了解用户是如何使用产品的经典埋点方式。因为是工程师人工将埋点结合到代码逻辑中,理论上只要是客户端操作,就算是再复杂也能采集得到。常见的如:页面停留时间,页面浏览深度,视频播放时长,用户鼠标轨迹,表单项停留及终止等。尤其是一些非点击的、不可视的行为,非代码埋点实现不可。数据运营全流程手册29图 3-4 代码埋点的优缺点所以如果我们需要对埋点有更加精准的控制力,那么代码埋点是最好的选择。当然弊端也很明显,前文描述的那些苦恼几乎全是代码埋点相关的,例如数据采集周期长、人力成本高等。|全埋点全埋点,一些国内团队也称“无埋点”、“无痕埋点”、“自动埋点”,是一种对全自动埋点方式的探索。从名字来看,这仿佛是个一劳永逸的解决方案。那到底什么是全埋点呢?要了解全埋点,就得先从客户端埋点说起。客户端埋点一般分为访问级、页面级、页内行为级:当用户访问一个网站或启动一个移动应用时,几乎所有厂商都会自动采集上报用户的访问;当用户访问不同页面时,有一部分厂商就会选择不默认自动采集,而将其作为一个选项交给用户;针对用户在某一个页面内详细的操作行为,只有极少数厂商支持自动采集上报。数据运营全流程手册30实现了后两种自动采集的厂商,通常会说自己是全埋点。但页内行为级的采集还可以进一步探讨其采集范围。最常见的就是自动采集可交互元素和自动采集所有元素的差别:可交互元素包含:链接、表单项(如按钮、输入框等)、HTML 的对象级元素等;不可交互元素很多,绝大多数的页面元素都属于此类。由于很多网页和移动应用中的界面都不是标准元素,所以很多看似可交互的元素实际上也都是无法自动采集上报的。那么,全埋点有哪些优点呢(见图 3-5)?图 3-5 全埋点的优缺点首先,全埋点会自动采集非常多的数据,而且未来在使用数据的时候可以直接从数据库中查询,不会面临“我想看的时候因为没有埋点采集而获取不到”的情况。这是非常受分析师喜爱的方式,因此经常会听到“能采集就尽量都采集,后续分析总能用得到”的说法。其次,埋点是比较耗时的工作,需要业务方提供方案,工程师进行埋点,测试团队进行测试。而由于实际工作中埋点数量比较多,每次发布新功能或新活动都需要新的埋点,所以埋点不但费时,而且错误率也难以控制。数据运营全流程手册31有了全埋点,数据用不用都先收回来,而且由于都是程序自动完成,业务人员想要 A 而工程师埋成 B 这种错误也几乎不存在。然而任何事物都有其两面性。第一,全埋点的“全”并非真的全部。基本的电脑浏览器和移动应用页面内常见的用户操作包括鼠标行为、键盘行为和手指行为。例如网页端常见的鼠标点击、鼠标滑动、屏幕滚动、键盘录入、光标选取甚至静止等;移动端除了类似点击的按下,还有多指开合、拉动、用力按下等。这些操作并不会都被“埋点”,能埋点的通常仅限点击或者按下,这显然是远远不够的,甚至我们都不能称之为全埋点。第二,全埋点的“全”以采集上报的数据量为代价,随着数据量上升导致客户端崩溃的概率也会上升。尤其是移动端,更多的数据量意味着更多的电量、流量和内存消耗。从这个角度来看,现阶段想做到真正的“全”也很难。第三,即使全部行为数据可以被接收回来,具体分析时二次梳理和加工也无法避免,甚至痛苦。因为机器在采集时无法按照我们想要的方式对全部事件进行有意义的命名,甚至无法保证采集上来的事件都是正确的。于是前期埋点时节省下来的人力成本,这个时候又都搭进去了。第四,现阶段全埋点对于用户身份信息和行为附带的属性信息也几乎无能为力。那么这个功能到底是我需要的吗?这其实是个度的问题。关于这个问题,需要结合实际情况,如果你更需要随机探索过去点击行为趋势,那么这个功能就合适,否则还有更好的选择。|可视化埋点代码埋点的缺点对于网站来说还好,但对于移动应用来讲无疑是极其低效的。为了解决这个问题,在一部分厂商选择全埋点的同时也有大量厂商选择了一种所见数据运营全流程手册32即所得的埋点道路,即可视化埋点。可视化埋点(见图 3-6),通常是指用户通过设备连接用户行为分析工具的数据接入管理界面,对可交互且交互后有效果的页面元素(如:图片、按钮、链接等),直接在界面上进行操作实现数据埋点,下发采集代码生效回数的埋点方式。这种方式所见即所得,跳过代码部署、测试验证和发版过程,极大提升生产力。图 3-6 可视化埋点的优缺点可视化埋点的好处是可以直接在网站或移动应用的真实界面上操作埋点,而且埋点之后立即可以验证埋点是否正确。此外,将埋点部署到所有客户端也是几乎实时生效的。因为可视化埋点的这些好处,分析的需求方、业务人员等没有权限触碰代码或者不懂得编程的人都可以非常低门槛地获取到用于分析的数据,可谓是埋点的一大进步。可视化埋点的部署原理也很简单。支持可视化埋点的 SDK 会在被监测的网站或移动应用被访问时向服务器校验是否有新的埋点,如果发现更新的埋点,则会从服务器下载并且立即生效。这样就能确保服务器收到最新的埋点后,所有客户端都能在下一次访问时得到部署了。易观方舟可视化埋点技术(见图 3-7)不仅能感知事件,即在定位埋点目标数据运营全流程手册33时能使用位置、属性等方式精确定位到事件触发元素;还能获取事件属性,即能灵活地获取与该事件相关的信息;还能多环境支持,例如安卓/IOS/JS 等平台、原生页面/Hybrid 模式(App 内嵌入网页的)、以及 mPaaS/React Native 等架构。图 3-7 易观方舟可视化埋点流程可视化埋点和全埋点对埋点和分析有着全然不同的追求:可视化埋点的理念是提升原工作流程的效率依然要梳理需求、设计埋点;全埋点则是将工作流都进行了简化反正数据会被采集回来,这两步的必要性就容易被忽视。这里不能说孰优孰劣,因为事先严谨的计划和事后发散的探索都是分析中的不同角度。况且这两种埋点也完全不是排他的,可以同时使用。但不可否认的是,可视化埋点局限性也很多:数据运营全流程手册34第一,可视化埋点也只是针对点击可见元素的,其中可见元素最常见的就是点击行为了。对于点击操作的埋点也确实是目前可视化埋点的主攻点。但从实际情况看,复杂页面、不标准页面、动态页面都会给可视化埋点增加不可用的风险,一旦遇到就只能代码埋点。第二,对于点击操作附带的业务属性,虽然也可通过进一步选取属性所在元素来获取属性信息,但国内除了易观方舟外,其他厂商支持得好的就比较少了。第三,为了确保埋点准确性,可视化埋点也逐步整合了更为复杂的高级设置,例如:“同页面”、“同版本”、“同层级”、“同文本”等。但加上了这些复杂设置的可视化埋点,还是那个为提效而生的可视化埋点吗?至于如何选择不同类型的埋点,易观方舟总结出一张“埋点对比表”(见图3-8),通过对比这三类埋点的优缺点,并结合自身的业务需求,即可选择最适合的埋点方式。图 3-8 埋点对比表例如,当业务需要特别高的精度,不能有出错的空间,但对时间要求不是很严格,就可以采用代码埋点。例如,数据采集需求不要求特别高的精度,比如说有 10000 条数据,我们能够容忍 1%-2%的差错,而且我们还想知道历史数据的话,就可以采用全埋点。数据运营全流程手册35例如,想知道更多的属性和信息,但不想通过代码埋点,且希望能马上生效,那么就可以采用可视化埋点。通过这张“埋点对比表”,可以帮助大家更快地根据自身业务的具体需求采用更合适的埋点方式,进一步再结合易观方舟的数据采集能力,即可更方便、更快捷、更准确地获取数据。3.3 梳理埋点需求需求梳理是对需要实现的数据采集目标进行整理。这里描述的需求,特指在涉及数据分析业务中所需要实现目标的整理。需求梳理是数据基础建设过程中的关键步骤,是指导数据采集方案以及验证最终数据建设结果的参考性文档,缺乏良好需求梳理的数据采集方案容易漫无目的,也难以验证。需求梳理对于数据基础建设的重要性有以下 3 点:第一,为数据建设确立目标。这里我们要思考数据建设是为哪些部分服务的,最终需要为各部门实现哪些目的。通常,不同的业务部门对数据分析的诉求不同,故需求也有所不同。在实践过程中,建议有数据分析需求的部门均按照本部门的需求先进行梳理后,再提供给数据建设的设计者。这样才能设计出兼容各部门需求,同时又兼顾全局的采集方案。第二,分析需求是否可实现。有时候,部分需求可能利用目前的工具、技术手段暂时没法实现,需要在需求阶段由有经验的设计者进行判断,明确大家对可实现目标的一致性。第三,支持需求排期计划。数据建设是一个随着应用版本迭代而不断进化的过程,不同的产品阶段需要进行不同深度的数据分析。所以在整理需求后,可实现对需求进行优先级评估,实现对需求实现的排期计划。需求梳理在企业内部一般由统一的管理人进行收集,需要对各部门的相关需求数据运营全流程手册36最终以数据指标的形式进行展示。|需求的 SMART 要素在进行需求梳理之前,我们需要对需求做要素的衡量,即衡量需求的 SMART要素。第一个要素:具体(Specific)。这是指每一个需求都必须是具体的,比如希望查看用户的 DAU、想了解用户注册转化率等,这都是非常明确的需求。然而如果用户需要一个指标体系,或希望提升业务增长,那这些需求就不具体且无法衡量了。第二个要素:可衡量(Measurable)。目标没有衡量就没有意义,在这里我们更多的是衡量是否能在工具中以某种形式实现。例如,以配置概览的形式实现需求、以 SQL 或其他形式实现需求等。第三个要素:可达成(Attainable)。要了解目前所具备的条件,判断需求是否可达成相应目标。有些用户行为数据分析工具主要以用户行为数据为主,因此需求也往往基于用户行为分析。如果存在财务分析、库存分析等类似需求,也需要评估是否可以转化成行为的方式进行计算。第四个要素:务实的(Realistic)。需求是无穷尽的,但资源却是有限的。合适的需求是满足当前及未来一段时间内分析、挖掘所需达到的目的。希望一次建立未来所需的所有数据采集是不可能的,所以需求梳理务实于当下所需要进行的分析,既能节省成本,又能促进当下业务发展。第五个要素:时间阶段(Time Phrase)。时间是限制需求的重要因素。对于时间紧、上线要求快的项目,梳理需求时必须考虑需求实现时间的影响。|需求梳理的基本思路数据运营全流程手册37由于不同的业务部门工作内容差别较大,梳理需求时建议以业务部门在使用数据的过程中需要分析的场景为主。具体的需求梳理思路,一般可以分为 2 个步骤:描述希望实现分析的场景和对场景分析以指标形式进行细化。当易观方舟技术服务团队帮助客户进行需求梳理时,我们首先会按部门梳理出各个部门的需求场景,再针对不同场景下提出的目标以对应指标的形式进行细化(见图 3-9)。例如,市场部大多喜欢使用易观方舟的渠道推广分析。那当市场部同学在渠道推广分析时,需要关注哪些指标?这些指标又应该如何定义?我们会额外关注这一点,因为不同公司对同一个指标可能存在不同口径的定义。图 3-9 易观方舟针对不同部门的需求梳理表需求梳理的展现形式应该以指标形式梳理表达清晰,也利于后期验证需求的实现。我们推荐将需求细化成指标后,作为指导埋点方案设计的需求文档。具体可以参考易观方舟总结的相应模板(见图 3-10):数据运营全流程手册38图 3-10 易观方舟埋点需求梳理模板(点击免费领取该模板)易观方舟可以实现多维度分析。所谓多维度分析是指针对某一个指标,可以从多种维度去查看这个指标变化情况,从而得到更多信息。因此,当易观方舟技术服务团队与客户对接好,并确定不同指标及其相关维度之后,就可以明确所需采集的数据,之后埋点方案设计就会水到渠成。3.4 设计埋点方案对于一名通过数据提取信息的人员来说,能进行多少数据分析的根本取决于数据采集人员在采集时获取的信息量,以及信息的准确率。然而在实际应用中,很多数据不准确、无法计算等问题,大多数都会定位到埋点缺失、埋点错误等。因此,严格把控数据质量是一项非常重要且必要的事情。假设存在方案 A 和方案 B。方案 A 是传统的常见数据采集方式,方案 B 是经过一定设计的埋点方案。两个方案拿到的数据(见图 3-11):数据运营全流程手册39图 3-11 A 方案和 B 方案埋点上传数据如果想要还原用户当时进行行为的场景,哪个数据会更符合我们的需求?哪个方案可以把用户当时行为的场景想象得更清楚一些?显然,当我们需要去还原用户场景的时候,方案 B 能分析的信息量更多。虽然方案 B 并不是十分完备,但经过一定的埋点方案设计,就能让我们采集的信息量更大、更准确。|埋点方案的设计流程每一份埋点就像一个产品,而“埋点设计师”的工作就像产品经理的工作。所以,参考产品的实现流程,当设计一份埋点方案时,不是直接开始设计,而是要从用户的需求开始。具体的步骤(见图 3-12):图 3-12 埋点方案的设计流程数据运营全流程手册40第一步:收集需求埋点采集的数据,面向的最终用户是各个部门需要使用数据的人员。所以,在进行埋点方案设计之前,有必要访问最终用户的需求。常见的有需求的部门有:市场部门、产品部门、运营部门、销售部门等。第二步:需求梳理由于各部门收集的需求可能形式不一,也会有很多重合的部分。所以需要我们对需求进行统一的整理,并根据目前公司的资源现状、埋点的技术实现成本进行优先级排定。这里推荐具体以数据指标的形式进行统一整理。第三步:需求解读为了实现从指标到埋点方案的落地,我们需要知道每一个指标是如何使用数据计算出来的。例如,指标 PV(页面被浏览次数之和)、UV(启动应用的用户去重数)等。当我们能解读每一个指标的计算方式之后,就可以着手实现埋点方案的设计了。第四步:埋点方案以上三个步骤都完毕后,便可以开始进行埋点方案的设计。埋点方案主要就是我们指导技术人员正确、准确、迅速实施埋点的方案。|埋点方案的 3 大组成一份完整的埋点方案由事件、事件属性和用户属性 3 大部分组成。(1)事件用户行为由用户一系列事件组成。事件是记录用户在使用网站、APP 或者小程序的过程中触发的行为,包含 5 个基本要素,通常简称为 4W1H(见图 3-数据运营全流程手册4113)。图 3-13 用户事件 5 要素 Who:对行为发起的主体进行标识,一般使用产品业务系统中的 user_id来进行标识,但并不是业务系统记录的用户时,我们也需要给用户一个匿名 id;When:行为触发的具体时间,一般会精细到毫秒级别,SDK 会自动进行采集;Where:一般应用中记录行为发生的地点,如:IP、国家、省份、城市。具体到应用上还应该采集一些设备相关信息,如:操作系统、设备型号、设备产商、应用版本等;How:用户发起行为的具体方式,一般已经包含在行为名称当中,如点击某按钮;也有一些行为是可以通过多种方式的,如一个操作可以通过点击也可以通过手势时,使用哪一种方式就是一种可以记录的信息;What:指用户具体行为的内容,如用户行为是购买了一件商品,那么就是购买的商品是什么、价格是多少、款式是怎样等信息。数据运营全流程手册42为了方便大家更好地理解,我们举了个简单的例子(见图 3-14):图 3-14 用户事件要素对应示例(2)事件属性通过属性可以为事件补充位置、方式、内容等相关信息。用户产生行为时会上报具体的属性值。比如对“购买事件”定义了“支付方式”的属性值,则根据不同的行为可能会有微信支付、支付宝支付等。举个例子:在某电商平台上,用 1 万元购买了一台联想电脑。这个动作就会产生一个名为“购买”的事件。而“购买”事件同时也可以包含“品牌”、“价格”这两个属性,而“联想”和“一万元”就是这两个属性的具体值。需要注意的是,不同的属性会有不同的数据类型,在数据分析时对应不同的计算方式。所以,在上报数据时需要注意采用合适的格式。易观方舟定义了以下数据类型(见 3-15),供大家参考:数据运营全流程手册43图 3-15 易观方舟数据类型定义示例(3)用户属性在数据运营的过程中,除了事件有属性,用户也有属性。我们需要引入用户的更多维度,才能更好地进行接下来的精细化运营。例如,注册用户 ID、用户等级、姓名等都是不同维度的用户属性。需要注意的是,我们在对事件和属性进行命名时,需要统一规范命名,并且在公司上下建立对这套命名规范的统一认知。这将有助于提升企业的数据管理效率和数据运营的实用性。|如何选择埋点时机?当用户发生一个行为时,往往有多个不同的埋点时机(见图 3-16)。在真实的应用场景中,大部分行为是需要向服务器发起请求的,面对这类行为时,埋点的触发时机就有多种可以选择。数据运营全流程手册44图 3-16 不同埋点时机不同埋点时机的优劣势,如下:处埋点时机1.用户触发立即埋点,易于理解;2.埋点后,数据经过公网传输,有一定概率会丢包,造成数据不准确;3.业务请求可能出现失败情况,导致和业务数据库对不上。例如,用户点击加入购物车,但是服务器加入失败,而这个时候埋点已经完成;4.连续多次点击可能造成多次上报。例如,当用户点击注册按钮时,可能1s 内连续点了 4 次,这时如果前端没有考虑这种情况,则可能上报 4 次注册,和业务数据库无法匹配;5.多端埋点,每一类型客户端都得埋一次数据采集代码;6.错误处理难,当出现埋点错误时,需要更新版本才能解决。处埋点时机1.埋点数据在内网传输,丢包概率极低;数据运营全流程手册452.业务请求尚未完成,可能出现失败情况,会和业务数据库对不上;3.缺少前端相关属性(如操作系统、应用版本、公共属性等信息)。一般而言,很少会选择在处进行埋点。处埋点时机1.埋点数据在内网传输,丢包概率极低;2.业务请求已完成,对于常用的如注册、订单等数据基本都能和业务数据库保持一致;3.缺少前端相关属性,例如操作系统、应用版本、公共属性等信息,可以通过发起请求时,将相应属性携带在请求中,在服务端解析后再一起上报该数据。虽然实现成本稍高但数据可靠、修改方便;4.同一个事件埋点,只需要埋一次,埋点成本低;5.更改方便,埋点不受客户端版本限制,随时修改即时生效;6.错误解决成本低,发现错误时修改一处即可,且立即生效。一般对于重要的、与业务分析相关的数据,如注册、订单、发帖、评论等行为,在此处埋点可以获得更准确的数据。处埋点时机1.埋点后,数据经过公网传输,有一定概率会丢包,造成数据不准确;2.业务请求完成后再埋点,对于注册等需要和业务端比对的数据,一般比要好一些;3.对于功能按钮,一般不会造成连续多次埋点;数据运营全流程手册464.多端埋点,每一类型客户端都得埋一次数据采集代码;5.错误处理难,当出现埋点错误时,需要更新版本才能解决。一般对于像搜索行为的埋点,在分析时需要考虑用户获取的搜索结果情况,所以若选择前端埋点,在此处埋点较为合适。综上,我们可以这样选择埋点时机:一般的纯前端交互行为,如下拉框选择,按钮点击等,选择在处埋点即可;业务行为多选择在后端埋点,如评论、点赞、购买、提交订单、支付等行为,选择在处更为合适,其次选择前端处埋点;前端、后端都可以获取数据时,有资源情况下,建议优先选择处埋点;综上,最终会形成一张 Excel 表格(见图 3-17),交给技术人员开始埋点。图 3-17 易观方舟埋点方案模板(点击免费领取该模板)数据运营全流程手册473.5 进行数据打通随着移动互联网的发展,在多数人拥有多台设备的今天,用户触点在跨设备之间移动已经成为常态。实际上,很多企业也在搭建产品矩阵,在 Android、iOS、H5、Web、公众号、小程序等多端着力。但多数情况下,这些数据之间是割裂的,那么要如何进行打通呢?说到数据打通,站在运营角度来看,自然是希望能够知道用户在各个平台上的完整数据,通过用户行为来挖掘用户真实需求,使得很多基于此的分析变成可能,比如:获得完整的用户旅程;对比了解用户在不同平台上的使用情况,优化用户体验;能够在一个系统中查看所有平台的数据,提高工作效率。今天,用户行为多变,同一用户跨越多个平台。识别用户是一个比较复杂的过程,尤其是对于有帐号体系的产品来说,用户会有多种使用场景,可能会在匿名情况下访问,也有可能在登录情况下使用,也有可能在同一台设备上登录不同的帐号,也可能适用同一个帐号在多台设备上登录。因此,选择合适的用户标识(见图3-18)有助于准确标识用户,提高分析准确性。图 3-18 跨平台识别用户数据运营全流程手册48具体而言,跨平台识别有两种方法:(1)确定性方法识别;(2)概率论方法匹配。确定性方法识别是利用用户帐号体系中的数据资源,可以是系统生成的UserID,可以是手机号,也可以是邮箱,不同的产品情况略有差异,总之就是用户唯一标识。比如,X 应用在 Android、iOS、Web、小程序四个平台上运营,各个平台用统一的帐号体系。假如小明有 Android、iOS、PC 三台设备,早上在Android 的小程序上看了一个推荐,中午登录了网页查看了详细信息,晚上回家在 iOS 手机上下单,那么完全可以通过 UserID 将用户行为连贯起来。概率论方法匹配:使用设备相关的间接数据来匹配。比如,Cookie、IDFA、上网时间、WIFI、IP 等等,通过机器学习或者其他复杂的规则来分析。但是严重依赖于数据的多样性和算法,相对确定性的方法来说,准确性差距很大,因此不推荐。易观方舟面向完整的用户数据,可以实现多端用户数据基于用户的唯一标识ID 打通,并且可以实现任意指标的下钻,可以追踪到用户行为粒度的详细数据。数据运营全流程手册数据运营全流程手册494.看数4.1 数据可视化埋点方案实施完毕及进行数据打通后,数据便可以通过易观方舟自定义可视化呈现。此外,我们还可以借助专业的 BI(Business Intelligence,商业智能)分析工具(例如观远数据,点此免费体验)进行数据可视化。随着世界进入大数据时代,数据可视化作为大量数据的呈现方式,成为当前重要的课题。数据可视化的目的则是要对数据进行可视化处理,使其能明确、有效地传递信息。|数据可视化呈现形式目前,大多数企业都会通过 BI 来做数据可视化呈现。在数据可视化的展现形式上,主要包含图表可视化和表格可视化。其中,最常见的 3 种图表如下:(1)柱形图(见图 4-1)图 4-1 柱状图示例数据运营全流程手册50基础柱状图,使用垂直或水平的柱子显示类别之间的数值比较。其中一个轴表示需要对比的分类维度,另一个轴代表相应的数值。用于回答每一个分类中有多少的问题。(2)折线图(见图 4-2)图 4-2 折线图示例折线图用于显示数据在一个连续的时间间隔或跨度上的变化,它的特点是反映事物随时间或有序变量而变化的趋势。例如可用来分析某类商品或是某几类相关的商品随时间变化的销售情况,从而进一步预测未来的销售情况。(3)饼图(见图 4-3)图 4-3 饼图示例数据运营全流程手册51饼图用于表示不同分类的占比情况,通过弧度大小来对比各种分类。饼图通过将一个圆饼按照分类的占比划分成多个区块,整个圆饼代表数据的总量,每个区块(圆弧)表示该分类占总体的比例大小,所有区块(圆弧)的加和等于 100%。随着业务场景及数据分析技术的进一步深入,又演化出了针对不同场景的可视化展现形式,如子弹图、堆积图与百分比堆积图、簇状图、帕累托图、瀑布图、旭日图、矩形树图、漏斗图等等。观远数据的一站式智能分析平台可以提供 50 不同种类和形式的图表,用户还可以基于观远后台强大的数据处理能力,构建自定义的数据可视化展现形式,通过自定义报表的形式,根据自己的实际场景,扩展出丰富多样的可视化类型。另外,用户还可以通过观远数据的可视化插件扩展,帮助用户更快更方便地落地数据可视化拓展的需求。|数据可视化设计原则除了数据可视化呈现形式之外,我们对数据可视化也有一定的设计原则。其中包括:准确。从数据转化到可视表达时不歪曲,不误导,不遗漏,忠实反映数据里包含的信息。有效。信息传达有重点,克制不冗余,避免信息过载,用最适量的数据-油墨比(Data-ink Ratio)表达对用户最有用的信息。清晰。表现方式清楚易读,具条理性,可以帮助用户快速达成目标,在最少的时间内获取更多的信息。美观。对数据的完美表达,合理利用视觉元素进行艺术创作,不过度修饰,给用户优雅的体验。数据运营全流程手册52可扩展。使可视化适应不同的设备与尺寸,同时预期用户对数据深度,复杂性的需求。在数据可视化设计的原则之上,我们需要注意的图表的逻辑是包括做图逻辑和业务逻辑的。其中做图逻辑指的是数据间的关系,其中包括成分关系、时间序列关系、大小排序关系、频率分布和相关性的关系。图表的业务逻辑则是指图表必须符合业务常识,包括渠道或客户大小逻辑,按业务重点排序、按城市大小排序等。其次,业务逻辑必须符合受众习惯,比如一张图表把 2013 年的柱体放在 2012 年前面,就不符合大多数人从左到右的看图习惯。第三,要适当突出作图者想表达的结论。|数据可视化应用通过观远数据可以轻松实现数据可视化(见图 4-4):图 4-4 数据可视化示例数据运营全流程手册53当我们把企业的数据要素做成可视化图表之后,就变成了我们所说的数据仪表盘,它的展现形式也可以是一个数据大屏。一个成功的数据仪表盘,需要考虑 4大方向的问题(见图 4-5):图 4-5 数据仪表盘需要考虑的 4 大方向问题当我们完成了数据底层架构的搭建之后,我们可以通过数据仪表盘进行可视化分析,其中可视化分析可以对多维形式进行联动、钻取、维度切换、链接等各种分析操作,以便剖析数据,使分析者、决策者能够从多个角度、多个侧面观察数据库中的数据,从而深入了解包含在数据中的信息和内涵。钻取。下钻是通过在维级别中下降或通过引入某些维来更细致的观察数据,通过改变维的层次,变换分析粒度。比较常见的例子就是地区的省市钻取,我们可以由某个省下钻到该省下的某市来查看数据。联动。可视化设计不需要将所有信息同时展示,而是通过筛选随时调取感兴趣的数据绘图,这个时候就需要用到联动功能。它指的是,一张图表和另一种图表的联动展示。数据运营全流程手册54跳转。链接功能不仅可以实现页面跳转,还可以传递参数值来实现跨页面的数据筛选。通过这些功能,企业可以从决策层、管理层和执行层的视角出发,通过实时准确的信息传递帮助管理者和业务人员及时发现经营问题,把握决策时机,同时通过实时数据监控,不断提升经营分析的效率和颗粒度。4.2 数据分析的 5 种类型作为运营,数据分析有时候是为了探究发生了什么、有时候是为了找到某件事情发生的原因,还有时候是为了预测分析可能会发生某件事情.在正式进行数据分析之前,我们需要弄清楚数据分析的 5 种类型。这里总结了 5 种数据分析类型,从描述性分析到规范性分析,数据分析的复杂性和工作量随之增加,且越往后越依赖机器。描述性分析发生了什么描述性分析是任何数据分析过程的起点,旨在回答发生了什么问题,是我们通过对各种来源的原始数据进行整理,再将其转化为对业务有价值的洞察。通过易观方舟可视化看板(见图 4-6),我们支持将采集的数据自定义可视化成线图、柱状图、气泡图等,可以很直观地看到发生了什么。数据运营全流程手册55图 4-6 易观方舟可视化看板示例 探索性分析探索数据之间的关系顾名思义,探索性分析的主要目的是探索,其最典型的应用领域就是数据挖掘。通过探索性分析,能够帮助我们发现原本不相关事物之间的数据变量联系。数据挖掘领域有一个典型案例:沃尔玛通过数据挖掘,发现纸尿裤与啤酒的销量数据呈相关关系。于是调整了超市货架的摆放位置,将纸尿裤与啤酒放在相近的位置,没想到双双增加了这两种完全不同品类的销量。诊断性分析为什么会发生诊断性分析是最常见的数据分析类型。运营人员通过诊断性分析能探究某件事情发生的原因,引发这件事情的前置事件是什么,这件事情发生后又会引发什么后置事件。例如,某天客户电话投诉突然减少:为什么会发生这种情况?通过数据分析发数据运营全流程手册56现,可能是因为雇佣了新客服、或者产品的某个界面添加了投诉功能等。如果能知道某件事情发生的原因以及是如何发生的,我们将能很快确定问题以及具体可落地方法。预测性分析会发生什么预测性分析通过分析已知数据假设未来,回答将来会发生什么的问题。预测性分析不仅会用到前文所提到的 3 种数据分析类型,还需要用到机器学习(ML)和人工智能(AI)等前沿的数据科学技术。例如,根据某零售店过去 5 年的销售数据,我们能预测该零售店下个月、下个季度的总销售额,以及某个单品的销量。通过预测性分析,不仅可以了解事情的发展趋势、模式以及某件事情发生的原因;还可以根据某件事情在特定领域的发展现状,做出明智的预测。易观方舟内置用户流失预警、商品销量预测等预测模型,大幅提升运营竞争力。规范性分析要采取什么行动规范性分析是最高级的数据分析类型,通过以上所有数据分析,并结合数据模型,回答要采取什么行动的问题。规范性分析会分析多个场景,预测每个场景的结果,并根据结果决定哪个是最佳行动方案。人工智能(AI)是处于数据分析前沿的规范性分析例子。人工智能(AI)建立在大数据基础之上,通过摄取和分解大量的数据,自学如何使用数据信息并做出明智的决策。我们在进行数据分析时,大多是进行描述型分析、探索型分析和诊断型分析,预测性分析和规范性分析大多交由机器去学习和解决。数据运营全流程手册574.3 数据分析的方法:三板斧 双股剑回到数据分析的实际应用中,不管是产品迭代优化分析,还是运营活动分析等,似乎总会涉及到很多数据分析方法。但万变不离其宗,最终总结下来其实都是这 5 种方法或者他们的交叉组合。易观方舟将其总结为数据分析的三板斧和双股剑(见图 4-7)。图 4-7 数据分析的三板斧和双股剑|数据分析的三板斧数据分析的三板斧分别是趋势分析、细分分析和对比分析。趋势分析趋势分析(见图 4-8)可以说是最基础且最常用的数据分析方法。通过对有关指标各期对基期的变化趋势分析,分析该指标的趋势变化,从中直观地发现问题,让运营决策更准确和更实时。数据运营全流程手册58图 4-8 品牌零售行业趋势分析示例例如,对于品牌零售行业,GMV 是最核心的指标,我们就可以根据日、周、月等时间维度描绘 GMV 的趋势图,这样便可以很直观地看到按照不同时间维度GMV 的变化。细分分析当趋势分析过于宏观,那细分分析(见图 4-9)则是精细化运营的必备,按照不同的维度一步步地对数据进行拆分,不断接近问题发生的起源,让运营获取更加精细的数据洞察。图 4-9 品牌零售行业细分分析示例例如,某品牌零售企业的 GMV 某天有明显下降,那么我们就可以根据全国各省级行政区的维度,细分湖南省、广东省、北京市、云南省等 34 个省级行政数据运营全流程手册59区,查看具体是哪个省级行政区的 GMV 有所下降。定位到具体的省级行政区后,还可以继续往市级、区级层层细分。对比分析对比分析(见图 4-10)是将两个或两个以上的数据进行比较,分析差异并揭示数据所代表事情的发展变化情况以及规律。其特点是可以非常直观地看出事情某方面的变化或差距,并且可以准确、量化地表示出这种变化或差距是多少,主要是为了给孤立的数据参考系。图 4-10 品牌零售行业对比分析示例例如,同样以品牌零售企业的 GMV 为例,通过对比不同年份的 GMV 变化趋势,我们可以很直观地看到这家企业的年度增长情况,判断是否值得投资。|数据分析的双股剑数据分析的双股剑分别是溯源分析和归因分析。溯源分析追溯到事情的源头去分析,是避免运营做过多无用分析的方法。举个例子,当一批用户到来我们的产品内,购买转化率比较低。通常情况下我数据运营全流程手册60们去分析,可能会围绕产品流畅度、运营活动力度,或者商品吸引力等问题。但很有可能从源头分析,这批用户就并非我们的目标用户,而是虚假流量。归因分析通过一种或者一组规则,将销售功劳或者转化功劳等分配给转化路径中的各接触点,即为归因分析。本质上归因分析都是为了衡量和评估用户触点对总体转化目标达成所作出的贡献,评价的核心指标为转化贡献度。但具体如何衡量和评估,就需要我们用到归因分析模型。有关归因分析模型的内容可跳转至 4.4.6。4.4 数据分析的 11 大模型在了解完数据分析的 5 种方法之后,我们再来认识一下常见的 11 种数据分析模型。|事件分析事件,是指用户在 APP、网站等应用上发生的行为,即何人,何时,何地,通过何种方式,做了什么事。事件分析模型主要用于分析用户在应用上的行为,比如打开 APP、注册、登录、支付订单等。通过触发用户数、触发次数、访问时长等基础指标度量用户行为,同时也支持指标运算,构建复杂的指标衡量业务过程。那么,事件分析模型能够解决哪些问题呢?例如:监测产品每天的用户数、访问次数、使用时长;趋势是否发生了变化?引起变化的因素有哪些?北京地区的用户和上海地区的用户,购买家电品类的金额分布差异在哪里?今天在产品中发起了一个话题,各个时段用户的参与情况如何?数据运营全流程手册61 最近半年付费用户数和 ARPU 值是多少?事件分析模型(见图 4-11)能够实时监测用户在不同平台的用户行为,通过不同维度归因指标变化因素,还能通过自定义指标组合成新的指标实现更为强大的分析能力。易观方舟智能分析产品支持细分维度与条件过滤,同时支持通过分析用户群进行人群对比。图 4-11 易观方舟事件分析模型|属性分析属性分析是基于用户自定义属性或预置属性的占比分析,能够按照不同的属性来统计用户数等指标的属性占比,进而得到初步的分析结论。例如,通过对性别属性的用户数占比分析,我们可以快速得到不同性别的用户数统计结果。通过属性分析,可以快速查看在不同属性上的用户数分布情况,便于统计不同特征的用户总量,在使用属性分析的过程中,需要合理选择度量方式,常用的度量数据运营全流程手册62方式包括:用户数、去重数、总和、最大值、最小值、均值等。例如:我们选择的指标为“累计消费金额的均值”,维度为“会员等级”,用户选择“所有用户”,那么我们得到的结果是“所有不同会员等级用户的平均消费金额是多少”。属性分析模型(见图 4-12)同事件分析模型类似,可以进行多维度多用户之间的对比、多种图表形式展示统计结果。在有标签功能的场景下,还可以对不同版本标签的统计对比分析。图 4-12 易观方舟属性分析模型|渠道分析渠道,即企业(产品)与用户产生互动的各个触点,比如搜索引擎、社交媒体、广告平台、线下站会等等。数据运营全流程手册63渠道分析模型用于分析用户(包括访客)的访问来源,通过访问用户数、访问次数、访问时长、跳出率等基础指标评估渠道质量,同时也支持自定义转化目标衡量渠道的转化效果。那么,渠道分析能够解决哪些问题呢?例如:各个渠道实时的访问用户数、浏览量如何?上周选择了多个渠道对网站进行推广,各个渠道带来的用户注册量如何?社交媒体、搜索引擎、外部链接哪个渠道带来的用户留存率更高?微信来源用户更多集中在公众号还是朋友圈?哪些搜索词带来的流量很大,且转化效果也好?渠道分析模型(见图 4-13)通过定义基础指标和转化指标、选择分析平台、渠道维度,就能够清晰地呈现各渠道表现,从而评估不同渠道的实际产出效果,最终选择优质渠道组合,提高整体 ROI。图 4-13 易观方舟渠道分析模型数据运营全流程手册64|Session 分析Session,即会话,是指在指定的时间段内在网站/H5/小程序/APP 上发生的一系列用户行为的集合。例如,一次会话可以包含多个页面浏览、交互事件等。Session 是具备时间属性的,根据不同的切割规则,可以生成不同长度的Session。Session 分析模型(见图 4-14)含多种度量 Session 访问质量的指标,包括访问次数、人均访问次数、总访问时长、单次访问时长、单次访问深度、跳出次数、跳出率、退出次数、退出率、人均访问时长、总页面停留时长、平均页面停留时长。图 4-14 易观方舟 Session 分析模型不同于事件分析,Session 分析中额外支持了一些维度的细分,以满足特定场景下针对 Session 分析的需求,包括:渠道来源分组:用以区分每次访问的渠道来源,仅适用于 Web/H5/小程序;数据运营全流程手册65 浏览页面数:以步长 5 为间隔,统计每次浏览页面数的分布情况;着陆页:用以区分每次访问的着陆页,可以评价不同着陆页的访问质量;退出页:用以区分每次访问的退出页,可以评价不同页面的退出情况,找到退出率高的页面进行优化;访问时长:按照 0-3 secs,3-10 secs,10-30 secs,30-60 secs,1-3mins,3-10 mins,10-30 mins,30-60 mins,1 hour 以上的区间进行划分,统计每次访问的时长分布。同事件分析类似,Session 分析也支持多指标、多维度和多过滤条件,同时也支持多用户分群之间的横向对比。同时在 Session 分析中,还支持按照日、周、月三种不同粒度来进行统计分析,用户可以根据查询数据的时间跨度来选择合适的粒度进行分析。|留存分析留存是指用户在 APP、网站等应用上使用过,并一段时间后仍有使用。留存分析模型是一种衡量用户健康度/参与度的方法,超越下载量、DAU 等指标,深入了解用户的留存和流失状况,发现影响产品可持续增长的关键因素,指导市场决策、产品改进、提升用户价值等。那么,留存分析模型能够解决哪些问题呢?例如:上个月做了一次产品迭代,如何评估其效果?是否完成了产品经理期望完成的行为?作为一个社交 APP,在注册后不添加好友和添加 10 个好友的用户后续留存有差异吗?数据运营全流程手册66 短期留存低,长期留存一定很差吗?两个推广渠道带来不同的用户,哪个渠道的用户更有可能是的高价值用户?近 30 天注册的用户,半个月都没有回访的用户比例是多少?留存分析模型(见图 4-15)支持条件过滤和多人群的对比分析,支持对全量数据随机抽样计算。同时我们还可以通过留存分析判断新用户在几天、几周、几月后是否愿意回来使用你的功能,还可自定义初始行为和结束行为进行功能留存分析。图 4-15 易观方舟留存分析模型留存是基于某个用户群体的初始行为时间来计算的,描述发生了某个行为的同期群,在一段时间后是否发生了期望的行为。初始行为和后续行为均可以是任意事件或者某个具体的事件。不同的分析场景中可以设置多个不同的留存条件来分析:初始行为和后续行为设置为相同,对比不同的功能重复发生的情况,发现用数据运营全流程手册67户对不同功能的使用粘性;初始行为相同,设置不同的后续行为,对比同一个优化是否对其他功能有不同的影响;后续行为相同,设置不同的初始行为,对比发现不同的运营手段、产品功能对核心业务目标的影响。|归因分析在做运营活动时,我们可能会在产品内的多个运营位上投放活动素材,试图在用户与产品交互过程中的各个触点上,吸引用户的注意力,引导流量走向和用户行为,促成最终转化。此外,用户本身可能还会通过搜索、内容推荐等触点获取信息,这些触点对用户是否能达成转化也发挥着重要作用。也就是说,在用户转化路径上,站内的众多触点都参与了对用户的劝说和引导,影响了用户的最终决策。那么,对比各个用户触点,它们对关键指标的达成分别贡献了多大力量,是否都如运营人员所预期的那样,具有优秀的转化能力;亦或者,存在被低估的情况?在之后的运营中,该如何调整对各运营位资源投入的权重分配?对于以上问题,归因分析提供了一种直观的度量 转化贡献度,主要用于衡量和评估站内的用户触点对总体转化目标达成(如订单总金额)所作出的贡献,可以非常直接地量化每个运营位和触点的转化效果和价值贡献。常见的归因分析模型有以下五种(见图 4-16):数据运营全流程手册68图 4-16 易观方舟 5 种归因模型 首次触点归因:将转化功劳 100%归于首次互动的待归因事件;末次触点归因:将转化功劳 100%归于末次互动的待归因事件;线性归因:将转化功劳平均分配给转化路径上的所有待归因事件;位置归因:按待归因事件在转化路径上的位置分配转化功劳,一般首次和末次互动的事件各占 40%,中间触点的事件均分剩余的 20%;时间衰减归因:按待归因事件发生的时间顺序,分配转化功劳,距离目标事件发生时间越近的待归因事件,做出的贡献越大,分配到的功劳越多。通过易观方舟归因分析模型(见图 4-17),只需简单五步设置(定义目标事件、触点事件、选择归因模型、定义窗口期和选择查询时间范围),就可直观看到各触点对总体转化指标的贡献情况。数据运营全流程手册69图 4-17 易观方舟归因分析模型|热图分析热图分析模型能够用热谱图直观呈现用户在网站、H5 页面、APP 上的点击、滚动行为,帮助产品、运营人员了解用户的点击偏好,辅助做页面设计优化、内容调整等。常见的热图类型有以下 4 种:点击位置热图(见图 4-18),用于展示用户在网站上所有点击的位置,聚集的点击越多,颜色越亮。通常用于分析着陆页:是否点击了 CTA 的内容?是否有被大量点击的重要按钮或元素被放到了很少有用户到达的地方?是否有用户点击的图片或文字其实没有链接?数据运营全流程手册70图 4-18 易观方舟点击位置热图 点击元素热图(见图 4-19),展示可交互元素的点击情况。用于分析:具体是哪些元素吸引了多少点击?占据了整页点击多少比例?是否有不符合我们预期的失误诱导?图 4-19 易观方舟点击元素热图 浏览深度线(见图 4-20),展示用户抵达某个区域的留存比例。百分比越低,越少用户能够看到这一位置。通常用于寻找 CTA 的最佳位置和内容营销转换监测。数据运营全流程手册71图 4-20 易观方舟浏览深度线注意力热图(见图 4-21),展示用户在某个区域停留的时长,停留时间越长,该区域颜色越亮。通常用于分析:了解到网页哪些内容吸引访客,哪些内容认为重要却被用户忽略?是否有被用户仔细阅读的内容放到了过于靠下的位置?图 4-21 易观方舟注意力热图不同类型的热图各有优缺点,例如点击位置热图,劣势是上报的数据量会增加,但可以非常直观地定性分析用户的探索性需求,发现非交互元素上意料之外的大量点击;点击元素热图,过滤掉了部分不可点击的内容,对可点击元素可以集中数据运营全流程手册72定量分析,但不够直观。我们可以在不同场景下选择不同适合的类型,目前易观方舟已经支持 Web 端的点击位置热图、点击元素热图、浏览深度线,APP 端的点击位置热图和点击元素热图(点此免费体验 11 大数据分析模型)。|分布分析分布分析(见图 4-22)主要能够提供维度指标化之后的数据分解能力,将原有维度按照一定的数值区间进行维度划分,进而分析每个维度区间的分布情况,在以下分析场景中十分常见:分析订单的金额分布、分析某类特殊事件的发生时段分布、分析某类特殊事件的发生次数分布、分析触发某类事件的用户年龄分布。图 4-22 易观方舟分布分析模型由此可见,分布分析主要针对的是数值型和日期型这两类属性,如金额、年龄、时间、频次,因此当用户打点上传的数据中包括这两类属性时,那么在日常的数据运营全流程手册73分析中就有可能会使用分布分析来解决一些特定问题。常用指标有:X 事件的次数分布、X 事件的活跃时段分布、X 事件的活跃天数分布、X 事件 Y 属性的总和/均值/人均值等分布。|间隔分析间隔分析(见图 4-23),主要用于统计用户从触发指定的起始事件开始到完成指定目标事件之间的时间间隔。也就是说主要提供从起始事件到转化目标之间的时间角度和步长角度的相关指标统计,便于关注转化的人群能够从这些指标中观察转化过程的情况。图 4-23 易观方舟间隔分析模型间隔分析应用场景比较丰富,既可以用于统计产品的登录时间间隔、复购周期等,作为衡量用户活跃度和用户黏性的分析工具;也可以作为对转化漏斗分析的一种补充,通过转化时长指标来衡量特定转化路径在时间维度上的转化效率。用于转化效率评估时,间隔分析是对转化漏斗的一种补充。不过两者各有侧数据运营全流程手册74重,间隔分析聚焦于用户完成转化的时间效率,而转化漏斗聚焦于转化的结果指标以及转化流程中各环节的转化和流失情况。我们在关注转化结果和影响结果维度的同时,也需要关注转化过程中的效率指标,例如:对金融理财类 App 而言,从落地页引流到首次入金,中间涉及的转化环节很多,除了最终转化率之外,需要关注核心步骤之间的转化效率,尤其是注册、绑卡等几个环节。通过间隔分析,观察用户完成两次指定事件的时间间隔分布情况,同时结合其他分析模型,我们可以洞悉用户行为背后的规律,从而发掘改善用户体验、提升活跃度、产品转化率以及不断提升产品价值的线索。|漏斗分析漏斗分析(见图 4-24),是分析用户使用某项业务时,经过一系列步骤转化效果的方法。易观方舟的漏斗分析模型能够灵活自定义多步骤之间的转化过程,找到关键流失环节及影响因素,进而分析用户行为进行针对性优化动作。图 4-24 易观方舟转化漏斗模型数据运营全流程手册75那么,具体而言,漏斗分析能够解决什么问题呢?例如:官网流量很大,但注册用户很少,是过程中哪个环节出了问题?用户从“注册 绑卡-提交订单-支付订单”总体转化率如何?不同地区的用户支付转化率有什么差异?两个推广渠道带来了不同的用户,哪个渠道的注册转化率高?上周针对注册环节的问题做了一次优化,转化率趋势是否有提升?在理想情况下,用户会沿着产品设计的路径到达最终目标事件,但实际情况是用户行为路径是多种多样的。通过埋点事件配置关键业务路径,可以分析多种业务场景下转化和流失的情况,我们不仅找出产品潜在问题的位置,还可以定位每个环节流失用户,进而定向营销促转化。|路径分析路径是指用户在应用中使用的行为轨迹。在产品运营过程中,无论是产品、运营还是市场团队都希望能够清晰地了解用户行为路径,来验证运营思路、指导产品迭代优化,达到用户增长、转化的最终目的。当有明确的转化路径时,通过预先建立漏斗来监测转化率会比较容易。但是很多情况下,虽然有最终的转化目标,但是用户到达该目标却有多条路径,无法确定哪条路径是用户走得最多的路径,哪条转化路径最短,这时候就需要智能路径分析模型的帮助。通过易观方舟智能路径分析模型(见图 4-25),能够打开用户行为黑盒,探索式发现转化目标的来源路径,可视化呈现所有路径和用户占比。数据运营全流程手册76图 4-25 易观方舟智能路径分析模型通过智能路径分析模型能够解决如下问题:用户主要是从哪条路径最终形成支付转化的?用户离开预想的路径后,实际走向是什么?不同特征的用户行为路径有什么差异?4.5 案例:产品注册数据分析数据分析的实质,其实就是通过数理思维来指导我们的业务工作。对于一款 App 来讲,我们可以从用户的新增、活跃、转化、留存等指标,来了解产品的整体运营状况;从业务人员的角度出发,市场渠道人员比较关注渠道的获客质量,运营人员比较关注用户在产品内的行为信息,从而对用户分群进行针对性运营;产品人员则关注产品功能使用情况以及核心流程转化情况。以已经有账号体系产品的注册为核心流程为例,给大家讲解下如何使用易观方数据运营全流程手册77舟进行数据分析。产品注册的一般流程(见图 4-26):图 4-26 产品注册的一般流程下面我们将根据具体的业务场景,先在易观方舟上找到对应的数据分析模型:了解产品的新增和活跃用户情况,利用易观方舟事件分析模型,可以查看每天的注册和登录用户数;查看注册流程的转化和流失情况,利用易观方舟转化漏斗模型,能够定位流失节点,找出用户流失的原因;了解流失用户(一个月未登录)情况,通过易观方舟用户分群功能,对流失用户进行分群,了解用户流失前行为以及用户画像,从而有针对性地开展召回活动。易观方舟是针对市场/运营/产品人员等对用户行为分析和精益运营的大数据产品。那么,易观方舟的产品功能是如何帮助业务人员实现数据分析需求的呢?对于市场人员来说,甄别渠道质量是一项重要的工作,同时也是自身的核心职业技能。易观方舟的渠道分析功能,能够帮助用户了解各渠道的获客能力,进而结合投放成本计算 ROI。分渠道统计注册用户数-评估渠道获客数量;分渠道统计活跃用户数、人均使用时长和留存-评估渠道获客质量;对于运营人员来说,了解用户在平台上的行为轨迹和偏好,从而有针对性地优数据运营全流程手册78化后续的运营监测策略。易观方舟提供了事件分析、留存分析、用户分群等功能,帮助运营人员根据数据分析结果实现精益运营管理。事件分析:主要分析用户在应用上的行为数据。可以了解活跃用户情况,可以从登录事件的触发用户数和触发次数进行分析;还可以从细分维度分析,根据登录方式占比评估用户偏好,优化登录通道;也支持指标运算和构建复杂指标,如注册转化率。留存分析:是一种衡量用户健康度/参与度的方法,可以深入了解用户留存和流失状况。注册用户留存,根据产品性质选择留存周期,若用户留存率较低可以通过运营活动(如签到)提高用户粘性。用户分群:用户分群即将用户标签化,把具有相同特征/行为的用户进行聚类,是精细化运营的基础。对于产品人员来说,无论是在早期验证 MVP(Minimum Viable Product,最简化可实行产品),还是正式运营阶段的迭代优化,最重要的作用就是通过数据分析验证产品功能和用户体验流畅度。易观方舟提供的转化漏斗功能就能够帮产品人员快速定位产品优化方向。若产品注册转化率较低,可以通过注册流程转化发现用户流失的重要节点,例如短信通道,下发短信是否收到验证码、产品是否出现 bug 导致用户注册失败等。数据运营全流程手册数据运营全流程手册795.用数5.1 数据驱动产品迭代优化对于线上产品,产品迭代优化可以拆解成 3 部分:流量分发、内容建设和业务达成(见图 5-1)。图 5-1 产品迭代优化 3 大部分组成流量分发除了推荐位,一般没有先前行为,后续行为基本上都是一样的。对于大多数行业来说,流量分发的数据分析方法都是一样的,解决的核心问题都是商品和用户之间的匹配。内容建设行为分为两类,一类是输出内容,目的是为了让用户掏钱;另一类是内容,目的是为了满足用户需求。前者需要支付成功才算业务达成,后者可能需要关注点赞转发就算业务达成了。业务达成主要有三种行为:第一种是进入业务流程,但未达成,退出。数据运营全流程手册80 第二种是最可惜的一种,进入业务流程,但未达成也未退出,跑别的地方去了。比如在结算页,有一个特别吸引人的推荐位,跟用户正在购买的东西高度交叉,人就被吸引到其他页面了。第三类是企业最希望的行为,进入业务流程,并达成业务。不同的业务占比有不同的路径分支。判断哪些价值高,哪些价值低,固定好比例,先优化这些指标,再去优化路径,最终达成业务。如果相应的内容建设和业务达成功能的数据量太小,不足以分析出有价值的结论时,只能先分配一些流量,让数据多一点。整个迭代优化思路就是先定位产品最薄弱的环节,抽丝剥茧,最后再完成小的优化动作。|案例:某化妆品电商品牌的产品优化下面,以某化妆品电商品牌为例,给大家介绍如何通过数据完成业务达成。将购物车改成购物袋会有效果吗?因为与在超市购买其他商品不同,化妆品在商场或专卖柜购买时使用的都是袋子而不是购物车。那么,将购物车改成购物袋会不会影响女性的消费心理,进一步提升支付转化呢?我们发现调整前后一周,从浏览页面到支付成功的数据没有很大的变化,只是常规的波动。但是用这个数据去验证购物车改购物袋的效果合适吗?其实不太合适。我们找了另外一组数据,从浏览商品详情到放入购物袋,调整后数据相比调整前是有提升的,证明有些消费者是真的被打动了。将这两个数据结合(见图 5-2),我们发现加入购物车不支付的用户因为这一改动反而增多了,加入购物车和支付行为并没有直接关系。数据运营全流程手册81图 5-2 购物车调整为购物袋前后一周数据对比通过调研发现,很多人把购物车当成收藏夹使用。购物车不操作,商品始终在里面;收藏夹不操作,商品始终在里面。虽然在产品上这是两个功能,但是由于它的设计在实用价值上没有任何差别,满足的用户需求完全是一样的。所以,要想办法把这两个功能从需求层面拆解出来,在做后续的优化才会比较有价值。否则从数据层面来看,用购物袋和收藏夹的用户都是一类人。我们给加入购物袋超过 7 天未支付的用户发信息询问是否愿意把这个东西转入收藏夹。一天内未回复自动进收藏夹;回复是,立刻进收藏夹;回复否,给他发一个限时优惠券,鼓励购买。因为加入购物袋的用户是有购买需求的,加入收藏夹的人可能是想要,但不是立刻要,通过以上运营动作就能将这两类人区分开来。这个调整虽然没有让加入购物袋转支付的数据提升,但是让企业通过数据更清楚地定义了这些用户。通过精准定义,对用户不同行为开展不同运营,使得后续整体复购率提升 16%左右。5.2 Workflow(自动化工作流)助力精细化运营对运营人员来说,与运营活动所要实现的明确目标相比,相应的运营策略要显得更加复杂多样。就用户触达而言,“给合适的人在合适的时机通过合适的方式推送合适的内容”是我们的目标,如果用户点击消息后完成转化行为,以上“4 个合适”可以说就已经实现了。但是,转化未成功的客户依然存在,这部分用户可能未接收到消息、未点击、数据运营全流程手册82点击后未完成转化甚至是产生反感情绪,进而卸载软件等情况不一而足。对于这部分客户,我们当然不可能置之不理,而是得根据其具体表现设置后续的触达方案,将产品价值以合适的方式呈现给他们,进而才能不断培养出更多自己的核心用户。上面提到的几种情况,虽然我们最后的运营目标一致,但用户路径却极为复杂。要做好精细化运营,除了完备合理的策略规划外,准确、及时的策略执行及同步的效果监测与分析也至关重要。前者是运营人员思维能力的核心展现,后者如果完全依靠人力执行,则需付出大量的时间与精力,疏漏难免的同时,也大大影响了运营人员在策略制定与完善方面的效率。能不能有一种工具?可以将运营策略以既定的逻辑自动执行下去,运营人员在完成逻辑设定后,只需将精力投入到效果分析与策略制定上来,工作效率定会大大提升。这种自动化运营的工作思路模型,最终被易观方舟实现产品化,特别是针对运营人员的工作流程问题,特别设置了 Workflow(点此免费体验易观方舟Workflow 功能)这一解决方案。|大幅提升运营效率的不二选择Workflow(自动化工作流)作为复杂运营策略的精确执行者,可以将复杂、长期的运营策略简化为系列具有逻辑关系的运营活动,系统将会自动判断活动中的各个节点状态,并根据预设的触发条件来运行下一步将要执行的动作。借助 Workflow 功能,可以帮助我们管理用户生命周期的各个阶段(见图 5-3),针对不同用户群体设计不同阶段的运营策略并自动执行。例如,针对新用户的激励策略、召回潜在流失用户的策略、刺激老用户产生复购的返利策略等,它们都是需要跨越很长时间周期的运营活动,并非短期或一次性的促销、领劵等运营活动。因此需要使用 Workflow 来设计更加复杂和多面的用户运营策略。数据运营全流程手册83图 5-3 用户生命周期的不同阶段借助于 Workflow(见图 5-4),企业运营人员还能进一步将已经验证有效的用户运营策略长期沉淀下来,在自动化执行中,结合环境变化与特点,对策略效果展开监测与分析,进而展开优化和改进,保持企业稳定的前进状态。图 5-4 易观方舟 Workflow 监测和分析功能示例|快速上手的便捷式运营工具易观一直践行着“让数据能力平民化”的使命,易用性也成为了易观方舟产品设计的核心要素,Workflow 的设计也同样遵循了易用性原则(见图 5-5)。数据运营全流程手册84图 5-5 易观方舟 Workflow 工作流程Workflow 内置了丰富的组件,通过组件间的组合,可以满足大多数用户运营的场景。同时随着产品的快速迭代,组件可以无限扩展。根据组件的作用不同,产品内将它们分成了 3 部分,分别是用户类组件、触达通道类组件及条件判断类组件。使用时,只需将目标用户分群拖拽至工作面板中,便可根据条件判断类组件中的不同逻辑关系,将用户进一步细分,并在触达通道类组件中选择合适的触达方式进行推送。运营人员只需将运营策略的思维导图准备好,便可根据提示快速完成Workflow 的设置。值得注意的是,在进行触达方式选择时,运营人员可根据自身需要,选择“并行”或“串行”两种手段(见图 5-6 和图 5-7),从而保证目标触达率的实现。数据运营全流程手册85图 5-6 并行使用多种触达通道图 5-7 串行使用多种触达通道数据运营全流程手册86|案例:电商运营的 Workflow 设置某电商 App 想在用户提交订单 20 分钟后,对未支付订单进行 Push 推送,提醒支付,以提升支付转化率,在易观方舟中我们采用拖拽的形式进行配置,配置示例(见图 5-8):图 5-8 电商行业 Workflow 活动示例以下为具体步骤,共分为 5 步。选定人群,从用户类组件中进行拖拽,运营触达的对象人群来自于易观方舟创建的用户分群,本次创建动态分群,即每日的活跃用户,配置完分群后进行保存具体配置条件。选定事件,从条件判断类组件中进行拖拽,本次选择【提交订单】事件,即分群内用户触发【提交订单】事件后进入后续节点。设置等待条件,仍从条件判断类组件中进行拖拽,一般订单支付的超时时间为 30 分钟,本次设置时间为 20 分钟,即用户在未支付订单后 20 分钟触发后续 Push 推送,即分群用户触发【提交订单】事件,20 分钟以后进入后续节点。设置后续触发事件,依然从条件判断类组件中进行拖拽,事件依然选择为【支付订单】,后续节点触发条件为“否”,即 20 分钟以后如果没有触发【支付订单】事件就触发后续行为。数据运营全流程手册87 设置 Push 消息,从触达通道类组件中拖拽,配置 Push 的标题和消息内容,即分群用户触发【提交订单】事件,20 分钟以后如果没有触发【支付订单事件】就触发该 Push。作为易观方舟智能运营产品的重要功能Workflow,它是数据赋能企业运营、提升运营人员创造能力的关键。以简便的操作,实现复杂的运营策略,帮助企业实现精细运营和精益成长。5.3“量质转换点“提升用户留存什么是高留存量质转换点?企业私域用户包括新用户、复购用户、流失用户等不同类型用户,其中,高留存用户的某些共性特征就是高留存量质转换点。通过找到这些共性特征,并引导其他用户也产生这些共性特征,以此提升留存率。不同产品的高留存量质转换点是不一样的,需要我们通过数据分析寻找。以易观方舟客户某智能健康硬件厂商的用户次月留存数据为例(见图 5-9),可以清晰地看到,当用户同步 14 次数据后,留存率明显提升,实现了由量到质的飞跃。图 5-9 某智能健康硬件厂商用户次月留存数据数据运营全流程手册88|行为 数字,促成量质转换的关键节点行为(同步数据) 数字(14 次),是促成这次量质转换的关键节点。其实,类似的量质转化点,在很多领域也屡见不鲜(实际上行业内也有叫“魔方行为数字”的):对 Facebook 来说,一个用户如果在注册的前 10 天就添加了 7 个好友,他就极有可能成为忠实用户;对 Twitter 而言,当用户在注册后一个月内关注过其他 30 个用户时,留存率大幅提升;Snap 的用户,如果在一周内发送超过 2000 条消息时,他就离不开这个聊天工具了;生鲜电商领域,当用户在前三月下单 3-5 次,或者半年内下单 6-10 次时,他有极大可能成为长期的忠实粉丝;还有易观方舟曾服务的珠宝行业客户,发现了珠宝客户量质转换点,即在首次购买首饰后半年内,又来柜台买了第二单。|提升留存量质转换点 6 步法如何寻找高留存量质转换点呢?易观方舟总结了高留存量质转换点的 6 步法。这 6 步法也是遵循了度量、分群和触达的理念。Step1:划分确定留存阶段周期(初期、中期、长期),根据行业确定留存指标和基准,对比实际数据和行业优秀数据,从而明确留存工作阶段重点和优先级。Step2-3:确定并跟踪群组,按时间(一般是按月)、按渠道、按不同频率次数等;尝试寻找高留存组特征。Step4-6:针对各阶段留存关键任务方向(初期阶段的指标寻找方向:用户体数据运营全流程手册89验达到一定的次数才能强化对产品价值的认识;中期阶段:习惯养成的心理学,核心任务是让使用产品成为一种习惯;长期阶段:确保产品继续为用户带来更大价值,升级现有功能或者推出全新功能),相应对未达到量质转换点的用户细分分群,制定相应的触达方案,并闭环追踪评估效果。易观方舟智能用户运营产品套件,包含的易观方舟智能分析工具、易观方舟智能运营工具能够完整支持以上步骤(点此开始寻找量质转换点)。具体方法(见图5-10):图 5-10 高留存量质转换玩法的智能用户运营三部曲|案例:某商业综合体 App以某商业综合体 App 为例,要如何寻找高留存量质转换点、以及促使非高留存用户转变为高留存用户呢?首先,进行用户分群,多维度分析不同核心事件,包括签到、线上支付、核数据运营全流程手册90销、线上积分兑换和自助上传积分(见图 5-11)。核心事件并不是仅仅是使用户产生购买的行为,也有承载用户服务的,我们需进行多维度分析。通过留存分析,找到各核心事件下高留存的用户群(图中黑色字体),再进行综合对比。图 5-11 各核心事件下的高留存用户群就签到这一行为而言,3 月份新注册用户当月签到 7 次的用户群,后期两个月的留存是最高的;3 月份新注册用户且支付过 2 次的用户群,后期留存也较好;3 月份新注册且核销过 2 次的用户群,留存也较高。我们会发现,高留存组的特征并不是数字越大越好,而是要找到一个临界点。在临界点之前用户留存曲线增长明显,之后缓慢下降。对我们来说数字越大运营难度越大,次数越高门槛越高,因此只需找到临界点即可。然后,通过综合对比(见图 5-12),虽然 3 月新注册签到 7 次(蓝色线条)的后期留存较高,但 3 月注册消耗积分 3 次(橙色线条)的用户在长远留存上更稳定。考虑到事件的具体性质,我们建议客户同时将注册首月签到 7次和注册首月消耗积分 3 次作为高留存量质转换点。数据运营全流程手册91图 5-12 3 月不同事件用户群留存对比最后,分析高留存组的用户行为特征,为后期将更多用户转化为高留存用户的运营策略做数据支持。例如,我们通过启动时间段分析,发现注册首月签到 7 次的用户组更喜欢在上午 9 点、10 点和下午 6 点、7 点签到(见图 5-13)。可尝试对首月注册且当天未签到的用户在晚上 8 点推送签到提醒,让新用户养成签到习惯。图 5-13 注册首月签到 7 次用户群首月启动时间段分析数据运营全流程手册92例如,我们对注册首月消耗积分 3 次的用户群进行消耗方式分析,发现这些用户更愿意参与抽奖类的活动(如积分兑奖等)。可尝试将此类活动作为主动引导用户多次消耗积分的抓手。例如,我们对注册首月消耗积分 3 次的用户群进行首月消耗积分行为间隔时长分析,发现高留存组用户再一次消耗积分的间隔时长中位数大致为 2.8天。可尝试将 3 天作为时间节点,在新用户首次消耗积分后 3 天内无消耗行为时,对其进行主动触达。通过分析高留存组的用户行为特征,我们可以制定引导更多新用户成为高留存用户的运营策略(见图 5-14),我们要考虑用什么样的方式、给什么样的人、在什么时机、发送什么样的内容、以达到什么样的核心目标。图 5-14 高留存用户运营策略此外,我们还给到该客户长期的运营策略建议,将高留存量质转换点融入固定运营策略。例如,将新注册用户在 30 天内签到满 7 次作为新手任务,任务完成后即可获得更多的奖励(如优惠券或积分),以此来促使用户主动签到、并养成签到习惯提升后期留存。数据运营全流程手册数据运营全流程手册936.数据运营案例6.1 幸福西饼2008 年成立,至今已走过 13 个年头的幸福西饼,已经成为一家由数据和技术驱动的新零售烘焙品牌。从全力转型电商到线上线下相结合,幸福西饼不仅重构了烘焙行业的商业模式,更是为传统烘焙行业探索新零售提供了新思路,并逐渐成为行业驱动者。目前,幸福西饼已拥有超 1500 万社交媒体粉丝,为超 2 亿人次提供优质烘焙产品带去幸福好味道。数据和技术是幸福西饼成为行业驱动者的核心驱动力。因此,幸福西饼在选择数据化运营的合作伙伴上也要求甚高。经过多方评估,幸福西饼最终选择易观方舟为其提供新零售业务的数据分析与全场景私域用户运营产品及解决方案,并达成长期合作关系。自合作以来,幸福西饼的新零售小程序幸福西饼 GO大幅提升了产品的精准分析,以及用户的精准触达等数据化运营能力。|个性化精准下发,小程序弹窗转化率显著提升幸福西饼 GO小程序运营最重要的是如何提升转化效能。弹窗是小程序转化新用户的强有力触点。如果对所有用户进行全量弹窗,那么弹窗的点击率相对较低。而通过易观方舟私域运营的微信生态运营工具,幸福西饼基于不同的人群进行小程序弹窗活动,提升弹窗的点击率。此外,通过易观方舟智能分析,幸福西饼会对用户从点击弹窗到支付的整个路径进行数据分析,不断优化和简化小程序的支付转化路径,提升新用户的支付率。幸福西饼会针对不同的新用户,借助易观方舟个性化精准下发弹窗活动(见图6-1)。数据运营全流程手册94图 6-1 幸福西饼针对不同新用户的弹窗示例|用户分群运营策略,小程序充值用户数持续增长要想提升小程序的 GMV,充值用户数的提升是非常重要的一环,一是需要考虑如何将新用户转化为充值用户,二是如何将已充值的老用户进一步转化为再充值用户。通过易观方舟智能分析的分人群事件分析,多维度对不同用户群体进行数据洞察,幸福西饼制定相匹配的运营策略(见图 6-2)。数据运营全流程手册95图 6-2 幸福西饼针对不同充值用户的运营策略示例通过易观方舟私域运营的 WorkFlow 功能(见图 6-3),幸福西饼可以提前设置好给什么人、在什么时间、通过什么触达方式、发送什么内容。易观方舟将会自动判断活动中的各个节点状态,并根据预设的触发条件来运行下一步将要执行的动作,这大幅提升了小程序运营效率。图 6-3 易观方舟私域运营-WorkFlow 功能示例此外,幸福西饼还会结合每次的活动数据,在活动中及活动后进行数据分析,数据运营全流程手册96进一步调优以找到最优充值用户转化方案。经过不断地迭代,幸福西饼 GO小程序的充值会员数已经连续数月持续增长,活动单日的充值金额也屡创新高。|数据化门店运营,产品报废率大幅降低截止目前,幸福西饼已经在深圳、广州、上海、南京、北京、天津、重庆、长沙等全国 240 多个城市建立了 400 多个分布式制作中心。用户下单后,幸福西饼的分布式制作中心即可快速生产,覆盖范围内 2-5 小时专业冷链高效配送(见图 6-4)。图 6-4 传统烘焙门店与幸福西饼新零售门店的区别正是因为创新的分布式制作中心,幸福西饼敢于为用户做出“就敢减(每迟到1 分钟减 1 元)、就敢退(货不对板退款不退货)、就敢送(迟到 30 分钟免费赠送)、就敢赔(早到或迟到 60 分钟以上,双倍赔付)”的幸福承诺,赢得用户的深度喜爱与广泛好评。传统烘焙行业的产品报废率相对高。幸福西饼凭借数据和技术的创新在降低产品报废率上颇有成效。一方面,幸福西饼会通过易观方舟分析小程序上用户路径每数据运营全流程手册97一个转化环节的各项数据,以此优化面包、饼干等产品的标题、图片等(见图 6-5)。数据同步到门店,指导门店的电子价签及门店商品卡片的优化,提升门店场景的销售效率。图 6-5 易观方舟智能分析-智能路径功能示例另一方面,幸福西饼会通过易观方舟数据看板实时监测各门店、各产品的销售数据,指导线下门店的配货。例如,明天北京某门店预计生产多少 A 款面包、B款饼干。以此提升线上下单线下配货的整体效率。作为烘焙行业的驱动者,幸福西饼一直秉持“用心传递幸福”的服务理念,始终坚持“新鲜现做,准时送达”的原则,不断完善服务体系。以数据和技术作为核心驱动力的幸福西饼,已经逐步构建起“产品力、技术力、传播力”三位一体的核心竞争力。正如幸福西饼集团高级副总裁刘苹女士所言:“易观方舟不仅为幸福西饼提供了数据驱动私域用户运营的产品,还提供了切实可行的落地方法。自合作以来,幸数据运营全流程手册98福西饼新零售业务团队的数据运营能力显著提升,各项运营指标也显著增长”。6.2 蜜雪冰城蜜雪冰城是以新鲜冰淇淋茶饮为主的全国知名饮品连锁品牌。自 1997 年创立以来,始终坚持高质平价原则,品牌飞速发展。截至 2021 年 8 月 15 日数据,蜜雪冰城全国门店已接近 18000 家,按照中国 3000 座左右的三四线城市及县级市计算,平均每个县市就有 4-5 家蜜雪冰城,其中,蜜雪冰城在一线城市、新一线城市以及二线城市的门店数量突破 7000 家,占比接近 40%。随着业务的高速发展,蜜雪冰城对数字化基础建设及数据决策的需求越来越迫切。传统管理手段在当前的规模递增效应下开始出现弊端,内部信息传递不及时,各业务部门日常的经营管理依赖手工统计逐层反馈,效率低下,区域及门店的异常表现也成为管理“黑洞”,难以快速洞察。同时,随着蜜雪冰城门店的不断增加,业务扩展的不断壮大,传统业务系统下的轻量级数仓已经无法满足未来发展的数据需求,跨库多表取数,运行慢,缺乏分层建模,运维麻烦,排查问题复杂,提取数据一人一视图,复用性、可扩展性低、难交接、难梳理等问题逐渐显露,此时快速响应的可视化的 BI 数据分析平台和统一规范的企业级数仓的搭建迫在眉睫。观远数据聚焦蜜雪冰城在数字化上的痛点与难点,为其提供了一整套数仓 BI平台的解决方案,在公司范围内建立企业级数仓和可视化 BI,同时建设配套的数据管理体系,实现各类数据整合、集中存储。另外观远数据还引入成熟的分层建模方法,实现数据的精准管理,用适合蜜雪冰城的决策分析模型和智能分析体系,提升其专业数据分析能力,为公司各层级决策提供数据支持。|一站式数据融合,助力业务迭代数据运营全流程手册99观远数据通过一站式智能数据分析平台,实现蜜雪冰城多个业务系统的数据接入,打破数据孤岛,减少沟通成本和系统集成接口,科学分层、实现数据贯通,提升了蜜雪冰城整体运营效能,同时也为企业提供自上而下、权限分明的数据视角。|多维度分析模型,赋能核心业务场景观远数据帮助蜜雪冰城营运部门建立起从总部级到门店级的数据运营体系,支持时间维度和区域维度的切换,一键实现区域订货排名、门店销售排名、时段销售、商品畅滞销,新品上市等二十多种营运特色业务场景的分析,帮助业务端实时洞察各个环节可能存在的问题和潜在机会,实现企业持续增长。|构建经营驾驶舱,数据驱动运营闭环观远数据通过和蜜雪冰城多个业务部门的走访调研,最终实现形成一版全流程链的指标体系,搭建了满足企业核心管理层、各级管理层和一线业务人员等不同角色的数据分析需求,打造“监控-分析-诊断-改善”的迭代闭环,赋能各级组织高效决策和快速反应。通过观远数据的数字化解决方案,蜜雪冰城摆脱了经验驱动,实现了运营效能的提升,数据成为了支撑业务的通用语言,真正实现了数据驱动业务发展。6.3 九阳胶囊豆浆机 Onecup现代生活场景下,越来越多的厨卫家电不断丰富着我们的生活。围绕家居厨房场景,看看智能厨电品牌 Onecup 是如何通过数据驱动实现私域用户运营的。作为九阳旗下专注于研发胶囊饮品机的独立子品牌,Onecup 的定位在继承了九阳健康优质品牌血统的同时,又将欧美盛行的胶囊咖啡机与国民度极高的豆浆机完美融合,利用先进的萃取技术,将豆浆的制作时间从 30 分钟压缩到 1 分钟,做到 1 颗胶囊一键式即时畅享。清新而有辨识度的外观设计,能够保证一周数据运营全流程手册100不重样的花式胶囊选择,Onecup 收割了对饮品需求度极高,同时又担心健康问题的时尚白领们隐藏的少女情怀。按下开始键的同时拿手机记录下美好瞬间,暖胃又暖心。Onecup 的用户足够垂直,而胶囊机“剃刀-刀片”式的消费模式保证了高度的粘性,却也存在一条目前消费电子领域普遍存在的问题:难统计、难转化。从电商平台或是实体商城买来后,无论是放在家中自用,还是摆在公司的茶水间与所有人共享,使用者都很难有耐心打开配套 APP 与设备互联,同时我们也无法知道买的人与用的人存在什么样的关系。数据采集源不稳定,且与用户缺乏关联性,这必然导致了 Onecup 难以从线下实体业务数据中提炼用户特征,也没有充足的使用数据指导其进行产品和 APP的改进。在 Onecup 找到易观方舟服务团队时,客户的需求非常明确:通过统一的用户 ID,打通各系统数据并进行指标规划,从而有效地进行数据分析。为了帮助 Onecup 打通业务数据,使运营人员能够第一时间便捷地进行数据分析,并进行精细化的用户运营,易观方舟服务团队选择从平台关联、数据可视化和用户触达3 个方面开展优化工作。|全渠道数据打通,形成用户 OneIDOnecup 要想把产品卖到用户手中,务必会经过电商平台和线下电器商店等销售渠道,再通过下单动作发货到用户手中,并被带回用户家中进行使用。与中间商的订供货数据、用户在平台上的订单数据与设备的使用数据之间,难以进行有效串联,这导致我们无法得知是什么样的人购买了设备?带回家又是如何进行使用的?而在数据上一旦形成人货分离的尴尬情形,双方提供的信息都不再具有针对性的参考价值,也就无法根据人群进行精细化管理和产品迭代。所以我们必须找到一个统一的 ID 作为线索,将各平台和线上、线下的数据关联起来,并导入数据库进行汇总,以还原完整的用户生命旅程。对此易观方舟服务团队选择了覆盖率最广且最容易获取的串联线索:用户的手机号码(见图 6-数据运营全流程手册1016)。对于厨房小家电而言,设备的消费者与使用者往往就是同一个人,而下单与绑定行为都会涉及到手机号码的录入,利用手机号进行数据关联具有可操作性和低成本的特点。图 6-6 利用用户手机号码沟通多平台的业务数据如上图所示,原本单向且不连续的数据,在设备绑定阶段被录入了手机号信息,我们就可以立刻追溯到电商平台的相关用户 ID,将使用者与使用习惯进行匹配,并统一汇总到易观方舟私域用户运营平台上进行管理,得到更加具体的用户画像和用户使用习惯,为精细化用户运营奠定基础。|数据可视化,多样化场景看板在设备使用数据与下单用户数据进行关联并汇总后,还需要经过提取的步骤才能到达运营人员手中,成为用户分析的依据。然而,在 Onecup 之前的数据管理模式下,不同的业务人员在工作过程中,一旦产生数据需求,就不得不通过 SQL和 Python 从庞大的数据库中爬取目标数据,过程费时费力,无法做到快速即时的数据反馈,而操作还必然会涉及到一定的开发知识,对人员的使用门槛较高,拖数据运营全流程手册102慢效率的同时还变相增加了企业的用人成本。根据各岗位的职责分工,Onecup 的运营人员需要快速获取针对性的业务数据,易观方舟的数据看板功能可以很好地解决此类调取问题。无论是针对获取、留存、转化,还是用户画像、用户偏好,或者具体营销活动的后续反馈,易观方舟都提供了相应的预设看板,而通过相应字段和标签,使用者还能够自定义设置个性化的看板,同时支持多个看板相互切换,可视化、人性化和实效性,能够满足客户企业绝大部分运营人员的数据提取需求(见图 6-7)。图 6-7 易观方舟电商 Demo 数据看板示例|精准用户触达,个性化营销利用手机号码将平台用户信息与设备使用信息打通,然后通过易观方舟的看板功能实现数据可视化,运营人员接下来可以使用数据平台提供的用户分群功能对用数据运营全流程手册103户进行更加精细的管理。基于用户使用偏好、频次和活跃周期等表现,Onecup不仅能够预估市场需求,指导不同产品的生产计划,还能在分群之后,对接相应的推送平台透过短信触达用户,针对各类细分人群运用有针对性的营销策略,以促进用户的留存和复购行为(见图 6-8)。图 6-8 分析使用数据对接平台实现短信精准触达以统一 ID 串联、围绕用户数据形成的运营及营销闭环,可以帮助运营者在易观方舟数据平台上进行自动化的便捷操作,实现一站式精细化的智能用户运营。既帮助企业有效利用了多个端口采集的业务数据,将其转变为可以持续开发的用户数据资产,又降低了企业进行用户管理和产品迭代工作中对运营人员的使用门槛,以较为低廉的成本实现企业的数字化管理。数据运营全流程手册
149人已浏览
2023-03-29 114页
5星级
LHH领德:为什么要向员工提供职业生涯过渡的支持?(2021)(11页).pdf
为什么要向员工提供职业生涯过渡的支持?解密一流的公司都在向员工提供职业生涯过渡的五大原因2为什么要向员工提供职业生涯过渡的支持?毫无疑问,当今的企业正在以更快的速度“变身”。很多企业甚至在新冠疫情造成重大经济破坏之前,就已经被迫适应商业环境,无论他们是受到政策、技术或人口的影响,企业不得不跟上市场需求的不断变化。在后疫情时代,尽管我们仍将面对很多不确定性,但全球知名数据统计互联网公司Statista的数据显示,2021年中国的GDP年度增长率将飙到8.44%,远超2020年的2.27%。而回顾中国经济在过去10年的表现,进入世界500强的企业也从69家升至143家,成为了全球第一拥有最多世界500强企业的国家。迈入世界500强的企业无一不在进行变革与创新,组织架构调整与人员调整是这类企业不断向前迈进的常态。同时,快速变化的市场环境也给一些企业带来了不小的挑战,他们为了短期的生存目标,不得不暂时缩减人员规模,以蓄力待发。人员削减是企业不可避免的决策,但若人员削减项目的计划与执行不当,企业将会面对许多令人意想不到的负面连锁反应,影响企业原本的战略目标。2011到2020年中国的GDP年度增长率与世界五百强占比47310414Q947016V884519c646320g670821712223086526t4127220309241598627%(%)Chinese Companies in Top 50020112011GDP(亿元)2012201220132013201420142015201520162016201720172018201820192019202020203为什么要向员工提供职业生涯过渡的支持?1 哈佛商业评论例如,仅仅1%的人员规模缩减就会导致1 次年的员工离职率增加工作满意度下降对组织的忠诚度下降工作的绩效表现下降31A6 %4为什么要向员工提供职业生涯过渡的支持?读到这里,不难理解为什么一流的企业都在向面临裁员的员工提供职业生涯过渡的支持,因为人力战略是企业成功推进业务转型战略的重要前提与基础。企业的领导者可能无法改变企业的重大决策,但在执行层面人力资源管理者一定要知人性、懂人心、晓人情。那些曾经为企业发展立下功劳的每一位员工都值得被尊重和被真心相待。富有责任心的雇主,会引导员工重启职业生涯,这样不仅可以帮助受到影响的员工走出阴霾实现职业过渡,同时让继续留在企业的员工安心工作。今天,绝佳雇主不再只是人才吸引和保留,当企业遇到人员削减的危机时,如何不让员工关系问题升级为劳动仲裁、公关危机或刑事案件,才是企业应该认真考虑的问题。接下来,让我们揭秘一流企业向员工提供职业生涯过渡支持的五个重要原因,以及这项服务为他们带来了哪些益处吧!5为什么要向员工提供职业生涯过渡的支持?2 国际劳工组织3 Statista支持团队处理人员削减的工作国际劳动组织(ILO)曾提出,为了应对全球就业缺口在2019年我们需要创造2.8亿个工作岗位,然而2020年由新冠疫情引发的经济危机却导致了全球范围的失业人数达到了1.14 亿2,这创造了前所未有的记录。很多人的工作在疫情期间变得危危可及,企业被迫实行降薪制甚至进行裁员。国际劳动组织(ILO)曾提出,为了应对全球就业缺口在2019年我们需要创造2.8亿个工作岗位,然而2020年由新冠疫情引发的经济危机却导致了全球范围的失业人数达到了1.14 亿2,这创造了前所未有的记录。很多人的工作在疫情期间变得危危可及,企业被迫实行降薪制甚至进行裁员。然而,疫情并不是影响企业裁员的唯一原因,近来在中国热议的双减政策直接导致了一场数百万中国人的职业迁徙,从教育行业走出来的人们陷入了迷茫与焦虑。作为雇主,为即将非自愿离职的员工提供职业生涯过渡支持对员工有着至关重要的引导作用,这还可以减轻企业的管理团队与人力资源部门的面临压力。当员工收到被裁员的消息时,无论是在现场还是在线上,第三方的及时支持对员工成功完成职涯过渡将产生重大影响。5,92%5,78%5,78%5,77%5,63%5,66%5,55%5,37%5,37%6,47%5,63 1020122011201320142015201620172018201920202010至2020年的全球失业率36为什么要向员工提供职业生涯过渡的支持?维持正面形象和良好声誉未来的候选人、员工、客户甚至投资者是企业的一些利益相关者,对他们而言,一家企业是否真正关心自己的团队和员工是最重要的考量因素之一。在困难时期为员工提供帮助和指导,有利于促进业务的发展,提高对外界人才的吸引力。彰显您的企业强调 向前看 的思维,这不仅可以帮助您的员工成功过渡职业生涯,还可以有效保护您费劲心力打造的雇主品牌形象,在业界维持良好的声誉。别让一场裁员演变为公关危机或刑事案件,通过第三方专业的支持确保您在促进组织不断发展时的专业、专注和尽心尽力。减少冲突,降低法律风险为员工提供职业生涯过渡支持还有助于化解雇员与雇主之间潜在的冲突。当您的员工面临非自愿的合同终止时,帮助他们找到新的途径,帮助他们平稳、顺利地离开,可以有效降低甚至避免任何可能发生的法律风险。因裁员项目处理不当而导致的官司与仲裁将导致企业付出高昂时间和费用成本,且一旦企业败诉将极大损伤士气和声誉。向员工提供职业生涯过渡支持将有助企业降低这些法律风险,实现更平稳、更成功的过渡。7为什么要向员工提供职业生涯过渡的支持?维持生产力 一项来自行业领先的研究调查机构Aberdeen Group的职业生涯过渡调查显示,63%的受访企业将以提高现有员工的敬业度以及留任率作为开展职业生涯过渡计划的出发点4。尽管解雇员工从来都不是一件容易的事情,但重要的是,不断思考如何提高留下来为企业工作的员工的积极性和生产力。即使那些员工不是必须离职的人,他们也会因为同事的离开在心理和情感上受到影响,如果加上企业对人员削减项目的管理不当,很可能影响团队的士气与员工的生产力。而职业生涯过渡支持将帮助您的人力资源团队更好地与员工沟通,通过提高员工适应力的相关培训和专家建议,提高敬业度和生产力。彰显社会责任2020年在社交媒体上除了能看到人们对疫情的焦虑,还可以到处看到人们对求职的渴望和对失业的绝望,而此时那些曾畅谈企业该如何彰显社会责任的雇主仿佛变得很透明。其实,职业生涯过渡支持可以彰显企业作为负责任的社会成员的定位,尤其随着企业将更多精力放在制定良好的企业社会责任政策时,这一点就变得越来越重要。通过提供职业生涯过渡支持,企业在对抗失业的斗争中发挥了作用,为更广泛的社会挑战真正做出了重要贡献,而这必然为企业好的影响。4 研究报告 职业生涯过渡的价值建立在员工敬业度之上 Aberdeen Group8为什么要向员工提供职业生涯过渡的支持?真正发挥职业生涯过渡最大价值一旦整个行业了解到为员工提供职业生涯过渡支持的益处,接下来的重点是确保服务的价值得到充分的发挥。请注意如果您使用职涯生涯过渡服务只是作为对内部和公众的幌子,这将无法为个人和组织真正带来任何积极影响。以下四条建议将指导您如何为即将离开公司的员工提供全方位的支持,帮助您达成员工敬业度和参与度的目标。9为什么要向员工提供职业生涯过渡的支持?在通知日当天的支持 无论员工是否预料到被裁员的消息,任何人在收到离职通知的那一天都会有各种各样的感受。有经验丰富的职涯咨询顾问能够帮助受到影响的员工理解和管理自己的情绪,同时还能够清楚地强调企业并不是将他们丢弃,企业还将提供专业的职业生涯过渡支持,由经验丰富的职涯顾问将为他们进行一对一的辅导,帮助员工进行过渡。当员工知道他们还有专业的团队在身后,帮助他们重拾职涯发展的主动权,这将有助于解决可能出现的潜在问题。持续不断的支持许多员工在第一次听到自己被裁员的消息时,他们可能无法接受,也可能不能完全理解他们得到的所有信息。他们需要一些时间来接受自己将要离开公司的现实,而不是立即考虑下一步的职业发展计划,这是人们在听到这样的消息后的正常反应。因此,许多企业在发布裁员通知后,会即刻告知员工当天有顾问咨询在现场支持,如果大家有问题可以即刻开始咨询。尤其对于有大量员工受到裁员影响的时候,现场支持对员工显得格外重要。10为什么要向员工提供职业生涯过渡的支持?贯彻以支持为核心的沟通我们不可避免地需要在员工感到五味杂粮的时候还要将大量的信息传递给他们。很多领导者担心如何与受到裁员影响的员工对话,有些领导者甚至将难题直接丢给人力资源部门。他们忘记了在这样的沟通中,我们必须向员工强调以支持为核心的信息,有多种方式企业可以提及职业生涯过渡支持的信息,让员工感受到企业的关心而不是无情。从初步沟通到直线经理谈话,企业需要制定涵盖所有形式和渠道的全面沟通计划,尽可能让员工获得专业的支持。积极主动的支持向您的职业生涯过渡合作伙伴提供受到裁员影响的员工的联系方式非常关键,这可以让第三方代表您的企业主动向您的员工提供支持。数据显示,通过职业生涯过渡得到支持的员工中有 88%的人是在初步沟通时其公司就提供了他们的联系方式。对于没有提供联系方式的企业,只有18%的员工使用了职业生涯过渡支持服务,对企业的敬业度与参与率指标有着极大的影响。当一个专业的团队积极主动地向您的员工提供支持时,他们会更愿意启动服务,也因此更容易与企业和解。2致电领德86 21 6157 7455 邮箱地址官方网站 领询LHH领德助力企业发掘企业内部人才的无限可能。通过法律咨询、职业生涯过渡、人才测评、背景调查、教练式辅导、领导力发展,以及技能升级与重塑一系列的解决方案,我们致力于在职业生涯的每一个关键时刻为企业保驾护航。作为世界领先人力资源解决方案公司德科集团的全资子公司,LHH领德遍布全球超过60个国家与地区,拥有4,200多位高管教练与雇员,为全球12,000家企业提供专业的人力资源管理咨询服务。我们为每一位与LHH领德合作的客户提供与众不同的专业服务。全球超过60%的世界500强企业都在与领德合作,拥有中国本地化的专业能力、全球化的基础设施,和领跑行业的技术支持,为我们帮助企业解决至关重要的人力变革与挑战奠定了成功的基石。欢迎通过我们官网
17人已浏览
2023-03-29 11页
5星级
全球风能理事会(GWEC):2023年全球风能报告(英文版)(120页).pdf
GLOBAL WIND ENERGY COUNCILGWEC|GLOBAL WIND REPORT 2023Associate SponsorsLeading SponsorSupporting SponsorGWEC.NETVERI_1101664_COUV_FI_A4_GB.indd 14/02/11 15:40:22Foreword 3 Executive summary 7Wind energy:The coming renewables acceleration 13Part One:A new energy market 17Part Two:Challenges in the supply chain 23Part Three:The risks and opportunities of regionalisation 33Part Four:The IRA is set to turbocharge the US wind sector 41Part Five:How Europe plans to rise to the challenge 47Part Six:Will China continue to be the market leader?51Part Seven:How to achieve a just transition 57Case studies 63 Focus on offshore wind 69Markets to watch 83Market Status 2022 91Market Outlook 20232027 103Appendix 1 1 1Table of contentsGlobal Wind Energy CouncilRue de Commerce 311000 Brussels,BLead Authors Mark Hutchinson,Feng ZhaoContributors and editing Ben Backwell,Emerson Clarke,Esther Fang,Ramn Fiestas,Jeanette Gitobu,Navneet Khinda,Reshmi Ladwa,Anjali Lathigara,Wanliang Liang,Wangari Muchiri,Thoa Nguyen,Liming Qiao,Marcela Ruas,Martand Shardul,Thang Vinh Bui,Nadia Weekes,Rebecca WilliamsAdditional contributions Asociacin Mexicana de Energa Elica,Asociacin Costarricense de Productores de Energa,SER Colombia Asociacin Energas Renovables,Associao Brasileira de Energia Elica e Novas Tecnologias(ABEElica),Camara Elica Argentina,Asociacin Peruana de Energas Renovables SPR,Asociacin Chilena de Energas Renovables y Almacenamiento ACERA,Japan Wind Power Association,Renewable Energy Institute Japan,Korea Wind Energy Industry Association,China Wind Energy Association,Developers of Renewable Energy for AdvanceMent(DREAM)Philippines,Thailand Wind Energy Association,Mongolian Renewable Energy Association,Indonesian Renewable Energy Society(METI),Iran Renewable Energy Association IRWEA,Electricity Sector Association of Kenya,South African Wind Energy Association SAWEA,Clean Energy Council(Australia),American Clean Power,Canadian Renewable Energy Association CanREA,WindEurope.We received valuable review and commentary for this report fromRina Bohle Zeller(Vestas)Dan Wetzel(IEA)Front cover image courtesy of VestasPublished27 March 2023Designlemonbox www.lemonbox.co.ukGLOBAL WIND ENERGY COUNCILGWEC|GLOBAL WIND REPORT 2023 1GWEC.NET 2ForewordCOP27 may have concluded with the target of 1.5C in critical condition,but the global commitment to renewable energy is stronger than ever.Meeting the objectives of the Paris Agreement calls for us to halve global greenhouse gas emissions by 2030.Thats less than seven years to replace swathes of high-emission technologies with zero-or low-carbon alternatives.In terms of energy,this means leaving behind a traditional system designed around fossil fuels and installing a new one as fast as we can.Aiming for 61%of total electricity generation to come from renewables by 2030,the IEA estimates that renewable energy capacity will have to triple,and that most of this growth is to come from wind and solar PV.1Scaling up renewable energy is key to the energy transition.Beyond the installation of renewable power,this also means installing transmission lines,building grids and storage solutions,and rolling out technologies that enable system flexibility.Delivering to this demand requires stronger supply chains across the renewables industry just at a time when supply chains are threatened by inflation,rising interest rates,geopolitics and bottlenecks.Investments in wind in 2022 decreased in Europe,the Americas,the Middle East and Africa.The only exception was the Asia-Pacific region.This marks a paradox during a period when various crises are disrupting energy security and climate deadlines are drawing closer.Wind energy has never been more needed:it builds energy security,lowers the cost of electricity and supports decarbonisation.Last years investment trends exemplify how faster political action is now critical.This year is crucial for strengthening the supply chains that bolster renewable energy.Healthy industries require thriving markets.At present,permitting and grid bottlenecks are limiting volumes to a crippling degree.Profitable companies must be able to set cost-covering prices.Policies must seek a balance between cost-competitive electricity,viable projects and healthy supply chains.In the current environment,prices are often pushed to their minimum,while technical and sustainability requirements increase costs in parallel.Renewables depend on a skilled workforce,access to raw materials,infrastructure and low-cost financing.Most market outlooks forecast an imminent increase in demand for renewables.Policymakers in major renewable energy markets have begun to address the current challenges by supporting the companies that will be driving the renewables scale-up.The USAs Inflation Reduction Act,Europes Green Deal Industrial Plan and Chinas Five-Year Plan are all clear examples of increasing political momentum.This welcome news can bring concerning underlying issues with it.The global wind industrys strength is its global footprint.Opening a subsidy race in support of loosely defined clean energy transition technologies while increasing protectionism would come at a huge cost to industries and societies.It is time for governments to realise that serious climate change mitigation and sustainable energy security go hand in hand.Governments must also accept that a thriving renewables industry is the first step to addressing both.Decarbonisation is too big a challenge for one country or region alone to overcome:only by working together can we unlock the acceleration needed to achieve a clean energy transition.GWEC and its members have an important role to play in supporting sound policies,collaboration and action.I look forward to doing just that.Word from the ChairmanMorten DyrholmChairman,Global Wind Energy Council1.https:/www.iea.org/reports/world-energy-outlook-2022GWEC|GLOBAL WIND REPORT 2023 3The coming years will mark a crucial transition period for the global wind industry.Later this year,wind energy will reach the historic milestone of 1 TW of installed capacity.It has taken us around 40 years to get here.However,the next TW will take less than a decade.The energy and climate policies now being pursued by the worlds largest economies in both the West and the Global South point to a whole new level of ambition and support for wind energy and renewables.These policies are likely to take us to 2 TW of installed wind energy by the end of 2030.They are the consequence of growing urgency in the fight against dangerous global heating;prolonged high fossil fuel prices and the impact of fossil fuel dependence on security;and the success of our industry in scaling up and establishing wind as one of the most cost-competitive and reliable power sources in the world.While the industry pushed through the new level of 100 GW of annual installations in 2021,the last few years have not been without their challenges.Many of the manufacturers at the heart of the industry have seen mounting financial losses caused by race to the bottom pricing,as a result of misguided government policies around procurement and offtake arrangements,exacerbated by higher inflation and logistics costs.Meanwhile,wind projects have been delayed or stalled by inadequate and inefficient permitting and licensing rules,from Denmark to India to Japan and beyond.This has created the bizarre paradox of energy markets rewarding fossil fuel companies with record profits,while renewable energy companies have struggled to break even.As this report shows,while companies have regrouped to adapt to the new inflationary pressures,the market has stalled,and the industry installed only 77.6 GW in 2022.All this has come at a time when policymakers are racing to address the energy and climate crises by dramatically increasing their targets for wind energy across the world.The situation,however,is about to change and 2023 will mark the start of a decisive turnaround.Governments of all the major industrialised nations have enacted policies that will result in a significant acceleration of deployment.In the US,the Inflation Reduction Act has completely changed the rule book for both onshore and offshore wind,while in the EU,policymakers are racing to introduce new rules and regulations to enable the huge increase in deployment that the REPowerEU plan foresees.In China,unstoppable momentum behind the energy transition continues,and the end of COVID-19 restrictions will see the return of faster economic growth.Large emerging market economies such as Vietnam and the Philippines are enacting new plans for wind,the sleeping wind power giant of India seems set to pick up the pace,and Brazil will continue to establish itself as a wind energy powerhouse.By 2024,GWEC expects onshore wind to pass the 100 GW annual installations mark,while offshore wind will install more than 25 GW in a single year for the first time in 2025,and installations will accelerate rapidly after that.Market conditions will change,as countries and regions will have to compete for badly needed We must invest in supply chain to build the next TWForewordBen BackwellCEO,Global Wind Energy CouncilGWEC.NET 4investment in their wind sectors:who gets the investment will depend on who has the most attractive market conditions and the most efficient regulators.For power equipment and this includes key commodities such as copper and rare earth elements(REEs),power transmission equipment,wind turbines and offshore installation vessels market dynamics are likely to change from buyers to sellers markets as supply chains struggle to keep up with demand.According to the data in this Global Wind Report 2023,spare capacity in the wind energy manufacturing industry is likely to disappear by 2026.For some inputs and in some regions,the squeeze will be felt before then.Both Europe and the US are facing the risk of supply chain shortfalls,and these could be worsened by policies aimed at reshoring manufacturing away from China and protecting local industry and jobs.As this report shows,while creating more diversity and resilience in the supply chain is an important and necessary objective,decision makers will have to design policy very carefully to make sure that it allows the fair exchange of essential inputs for the energy transition,fosters innovation and keeps costs from rising unnecessarily.In order to ensure that the wind industry is able to meet the expectations of policymakers and society at large,it is essential that we start investing in new capacity and plant,and in training and skills,right now.Otherwise,we run the risk that we will not be able to deliver our promises,policymakers will turn to other,less efficient alternatives,and society will fail in its climate goals.This may sound counterintuitive in an environment where companies have found it difficult to keep their businesses viable,but it is a challenge we cannot ignore.Thankfully,the sectors leaders can see the opportunity ahead,and companies are already investing despite the highly unfavourable conditions of the last few years in new manufacturing facilities,from South Korea to the US to Poland.Much more is needed,and fast.The wind industry will need to forge new partnerships with governments,cities,communities,investors and customers in order to enable the next era of growth.Working together,we can put into place the right policies,which will allow trillions of dollars in investments to flow and the creation of millions of jobs.As a starting point,we need to leave the hesitancy of the past behind and adopt a new mindset in our industry.The wind industry is no longer the hobby sector of forty years ago.Our technology is resilient and mature,and is poised to play a unique role in the energy transition.Now,in order to deliver on the promises we have made,we need a confident wind industry that is capable of moving boldly ahead.ForewordThe wind industry will need to forge new partnerships with governments,cities,communities,investors and customers in order to enable the next era of growthGWEC|GLOBAL WIND REPORT 2023 5ForewordIn Brazil,we are living in a time of great excitement and renewed hope in our potential and in the future.The new government of President Luiz Incio Lula da Silva is resuming work on key issues that were abandoned in recent years,such as the fight against climate change,protection of the environment especially the Amazon and the reduction of social inequalities.These are matters dear to the wind sector,which positively impacts society from an environmental,social and economic point of view.The Brazilian wind power revolution has been under way for some years now.The industry achieved 25.6 GW of installed capacity in 2022,with wind energy now holding a firm position as one of Brazils strongest energy generation sectors.In addition to the continued growth of onshore wind,we have great expectations for the development of Brazilian offshore wind.IBAMA,the Brazilian Institute for the Environment and Renewable Natural Resources,has already received project proposals for more than 170 GW of offshore wind energy.This number is equivalent to practically the entire Brazilian electricity matrix and shows the extent of investor appetite and the enormous potential for offshore wind in Brazilian waters.There is not enough demand for that amount of electricity,however.Thats where green hydrogen comes into play.Coupling this technology with the enormous potential for offshore wind could consolidate Brazils standing as a renewable energy superpower building on its already advanced wind energy supply chain and wider industrial and maritime capabilities.The renewable resources available in Brazil,especially its abundance of quality wind both onshore and offshore,are certainly unique in the world.This opens a window of opportunity for the production of green hydrogen,which would have the capacity not only to revolutionise Brazils energy matrix already one of the most renewable in the world but also to export green hydrogen to other countries that may not be able to produce all the renewable energy they will need to meet their energy transition goals.Brazilian companies and state governments have taken important steps towards the creation of a green hydrogen sector for the country,including agreements to invest more than 200 billion USD.In January,EDP produced its first green hydrogen molecule in Brazil and Unigel will have its first hydrogen and green ammonia production plant in commercial operation by the end of 2023.From 2050,according to the consultancy Roland Berger,Brazil could derive annual revenues of 150 billion BRL from green hydrogen,of which 100 billion BRL would come from exports alone.1What we are seeing,therefore,is an industry that is already here and ready to grow rapidly,especially considering the opportunities for domestic demand.Currently,Brazil uses fossil-fuel hydrogen in its fertiliser,refining,chemical,food and metallurgy industries.Replacing this with green hydrogen would allow decarbonisation and net zero in many Brazilian industry sectors to become a reality.We know this is a long road,but we are also certain that we are on the right track.The Brazilian wind energy revolution is already here for all to see and will continue to gain strength.It is just a matter of time and dedicated work by the government,investors,companies and professionals in the sector.Lets all work together to continue putting the wind in Brazils sails.Brazils wind power revolutionElbia GannoumPresident of ABEElica,Brazils wind energy and new technologies association,and GWEC Vice Chair1.https:/ the supply chain for the industry of the futureChristopher L.MapesChairman,President and Chief Executive OfficerThe Lincoln Electric CompanyAs the global wind industry focuses on solving the supply chain challenges ahead for the expansion of offshore and onshore wind,there are tremendous accomplishments already achieved.The transformation of steel into the key components of the energy transition is already well under way,supported by record new investment commitments.From new steel plant capacity,planned or already online,to pipe mills,shipyards and regional fabricators around the world,these new industry investments are driving one of the most rapid global industrialisation periods we have seen.The outcome of this process will enable the world to build and install turbines,towers and foundations(fixed-bottom and floating)of immense size,never before realised.With the race to wind turbines of 20 MW accelerating,the offshore wind supply chain of the future will need to produce at elevated levels,higher than ever before.However,it is clear that the present levels of investment commitment across the entire supply chain still fall well short of what is required for the global industry to hit installed capacity targets.The supply chain of the future needs rapid expansion in line with the ambitions of its main stakeholders.This is why GWECs Global Wind Report 2023 is even more crucial,highlighting a number of key actions necessary in both the short and long term.While there are many pieces of encouraging news across the global supply chain,there are also several practical challenges to overcome if we are to accelerate capacity to meet the installed targets forecast around the world.As a key global supplier who supports the entire fabrication supply chain of assets and infrastructure,Lincoln Electric sees the global industry through a unique lens.Key to unlocking the full capacity of the supply chain is innovation,together with new installation methods,designs and advanced technology that can drive the profitable success of the industry.Additionally,the continuous development of a highly skilled workforce will be critical,as well as the implementation of higher levels of automation solutions,which can reduce project hours and overall costs.Todays industry leaders know that new technologies for steel transformation will play a critical role in profitability,particularly in welding and cutting,which continues to be at the core of the expanding global wind industry.Lincoln Electric and other critical supply chain businesses are leveraging decades of industry expertise and experience to innovate and solve these critical challenges through two key drivers:technology and higher involvement in workforce training and development.Together,these critical initiatives will advance the growing global needs for a highly skilled workforce that can support the ambitions of industry and countries around the world.Building on earlier success in offshore wind across Europe and now the rapid expansion in Asia and the Americas the future of the wind industry depends on the combined efforts of many.The industry needs continued support from governments and private investment around the world for further acceleration and expansion of the supply chain.By aligning these resources with a growing role for wind as a key part of the energy transition,the industry will thrive.SponsorThe supply chain needs rapid expansion in line with the ambitions of stakeholdersGWEC.NET 6EXECUTIVE SUMMARYGWEC.NET 8Wind in 2022Nearly 78 GW of wind power capacity was added last year,the lowest level in the past three years but still the third highest year in history.This was achieved despite a challenging economic environment and a disrupted global supply chain,compounded by global health and energy crises.Market status Globally,77.6 GW of new wind power capacity was connected to power grids in 2022,bringing total installed wind capacity to 906 GW,a year-on-year(YoY)growth of 9%.The onshore wind market added 68.8 GW worldwide last year,with China contributing 52%.Additions were 5%lower than the previous year.The slowdown in Latin America,Africa&the Middle East is partly responsible for the decline,but the primary reason is falling installations in the US.Despite finishing the year with a strong final quarter,the US wind industry commissioned only 8.6 GW of onshore wind capacity in 2022,due in part to supply chain constraints and grid interconnection issues.Thanks to record installations in Sweden,Finland and Poland and recovering installations in Germany Europe performed well in a volatile 2022,adding a record 16.7 GW of onshore wind capacity and bringing its market share up to 24%.Onshore wind additions in North America last year fell by 28%while new additions in Asia-Pacific(APAC)remained constant,but the three regions combined still made up 92%of global onshore wind installations in 2022.8.8 GW of new offshore wind was fed into the grid last year,bringing total global offshore wind capacity to 64.3 GW by the end of 2022.New additions were 58%lower than the bumper year of 2021 but still made 2022 the second highest year in history for offshore wind installations.China continued to lead global offshore wind development,although its new installations dropped to 5 GW from 21 GW in 2021 a record year driven by the end of the feed-in tariff(FiT).Two other markets reported new offshore wind installations in APAC last year:Taiwan(1,175 MW)and Japan(84 MW).No intertidal(nearshore)wind projects achieved commercial operation in Vietnam in 2022,due to the ceiling price to be used by Vietnam Electricity(EVN)to negotiate PPAs with investors for their renewable projects missing until January 2023.Europe connected the remaining 2.5 GW of capacity in 2022,with France and Italy each commissioning their first commercial offshore wind projects.Despite the rate of installations last year being the lowest since 2016,Europes total offshore wind capacity reached 30 GW,46%of which is from the UK.With total installed offshore wind capacity reaching 34 GW in APAC,in 2022 Europe relinquished its title as the worlds largest offshore wind market.Nevertheless,Europe continues to lead the way with Feng ZhaoHead of Strategy and Market Intelligence,GWECThe Data:2022 was the wind industrys third-best yearGWEC|GLOBAL WIND REPORT 2023 9Wind in 2022floating wind.Norway commissioned 60 MW of floating wind capacity last year,bringing the regions total installations to 171 MW,equal to 91%of global installations.Market outlookThe unprecedented twin challenges of ensuring secure and affordable energy supplies and meeting climate targets have propelled wind power development into an extraordinary new phase of ever faster growth.After a challenging year,the global wind market is ready to bounce back in 2023,exceeding 100 GW for the first time.With a double-digit growth rate of 15%,the mid-term outlook for wind energy looks very positive.GWEC Market Intelligence expects that 680 GW of new capacity will be added in the next five years.This equals more than 136 GW of new installations per year until 2027.We believe there are five pillars that will underpin this level of success in the next five years:l Europes renewed urgency to replace fossil fuels with renewables to achieve energy security in the aftermath of the Russian invasion of Ukraine.l A strong uplift for renewable energy in the US over the next ten years,primarily driven by the Inflation Reduction Act(IRA).l Chinas commitment to further expanding the role of renewables in its energy mix,aiming for renewable energy to contribute more than 80%of total new electricity consumption by the end of the 14th Five-Year Plan(2021-2025).l Governments fully waking up to the opportunities that offshore wind can provide,making offshore wind truly global and increasing ambition in mature and developing markets.l Strong growth in large emerging markets both onshore and offshore from the middle of this decade.The CAGR for onshore wind in the next five years is 12%.Expected average annual installations are 110 GW,with a total of 550 GW likely to be built in 20232027.Growth in China,Europe and the US will be the backbone of global onshore wind development in the next five years.Altogether,they are expected to make up more than 80%of total additional capacity in 20232027.The global offshore wind market is expected to grow from 8.8 GW in 2022 to 35.5 GW in 2027,bringing its share of total new global installations from todays 11%to 23%by 2027.In total,130 GW of offshore wind is expected to be added worldwide in 2023-2027,with expected average annual installations of nearly 26 GW.Beyond 2027,we expect the growth momentum to continue as global commitments to net zero,coupled with growing energy security concerns,have already brought the urgency of deploying renewables to the top of the political agenda.Compared with the 2030 global outlook released alongside last years Global Wind Report,GWEC Market Intelligence has increased its forecast for total wind power capacity additions for 20232030 by 143 GW(YoY growth of 13%).The revised growth rate will only achieve 68%of the wind power capacity required by 2030 to stay on track for a net zero/1.5C pathway.Nevertheless,GWEC believes that the milestone of a second TW is likely to be passed before the end of 2030 provided governments implement new policy solutions to ensure that the global supply chain can meet increasing demand from both established and emerging markets in addition to addressing challenges such as permitting and market design.The twin challenges of secure energy supplies and climate targets will propel wind power into a new phase of extraordinary growthGWEC.NET 10Policy summaryBy mid-2023 GWEC anticipates wind energy to achieve the highly symbolic milestone of 1 TW in operation.And the 2 TW mark is expected to arrive by 2030,closing a decade of tumultuous acceleration.The sector has changed beyond recognition over the past four decades.Long gone are the days of wind installation clusters in a handful of European countries and a few US states.Wind power has a growing presence in tens of countries worldwide.The surge of offshore wind and innovative technologies such as floating foundations promise to deliver large amounts of wind energy in locations where its deployment would have been unimaginable until very recently.The stakes could hardly be higher for wind energy as the world strives to emerge from the polycrisis of post-pandemic recovery,inflationary pressures,a war in Europe and growing climate impacts.But all the signs point to a sharp turnaround this decade,and it is starting now.A sluggish 2022 saw only 77.6 GW of additional wind capacity installed globally 17%lower than the previous year but still the third highest year in history for additions.Offshore additions,at 8.8 GW,were less than half the 21 GW clocked in 2021,and yet the second highest volume ever.Despite the relatively positive wind installation numbers,2022 was the year when a perfect storm of race to the bottom pricing caused by misguided government policies,higher logistics costs and project delays due to inadequate permitting rules created the bizarre paradox of energy markets rewarding fossil fuel companies with record profits,while renewable energy companies struggled to break even.Change has altered the dynamics of the wind industry too.From an early obsession with demonstrating reliability to an unrelenting drive to cut costs,the wind industry now needs a laser-sharp focus on ensuring that it can deliver the ambitious installation targets required of it.Renewables will dominate installationsUnder all credible scenarios,renewable energies will dominate installations over the coming years.The IEA forecasts that nearly all of the additional electricity generated between 2022 and 2025 will come from renewable energy sources.Alongside solar,wind will remain a leading source of renewable power.By 2024,GWEC expects onshore wind to pass the 100 GW annual installations mark,while offshore wind will install more than 25 GW in a single year for the first time in 2025.Installations will accelerate rapidly after that,driven by most countries ambitious green energy and climate targets.GWEC forecasts that 680 GW of wind capacity will be installed globally by 2027,of which 130 GW will be offshore.The Story:the wind industry gears up for the coming accelerationGWEC|GLOBAL WIND REPORT 2023 11Policy summaryAs our heat map(see page 82)shows,there are still tens of countries where wind power development is being held back by regressive policies or ineffective processes.Increasingly,however,governments are eyeing up the vast opportunities that facilitating this sector opens up in terms of industrial development,skilled jobs and socioeconomic returns,as well as environmental benefits.Investing to boost wind developmentWind energy has established its credentials as one of the most efficient tools for decarbonising power systems.Failing to deploy wind fast enough risks increasing costs through greater exposure to fossil fuel volatility,geopolitical pressure and higher carbon emissions.Socially,wind power has the potential to benefit communities by creating millions of skilled jobs around the world.Economically,it can act as a catalyst for trillions of dollars of investment.Heavyweights such as the US and the EU have ramped up government support for wind energy.The Biden administrations Inflation Reduction Act(IRA)is already mobilising massive investment in renewable generation,decarbonised transport,energy storage and improved grid connections.In Europe,the REPowerEU programme seeks to wean the continent off Russian gas while removing obstacles to green energy deployment.And approval of Chinas 14th Five-Year Plan,covering the 20212025 period,turbocharges innovation-driven low-carbon development,with GWEC estimating annual wind installations of 6065 GW per year for onshore and 15 GW for offshore in the second half of this decade.While these policies are providing a welcome boost to local industry and promising long-overdue action to reduce some of the complex rules associated with wind energy development,they could also threaten the sectors ability to rise to the acceleration challenge.Growing demand for equipment and the key commodities that are required to produce it will place significant pressure on supply chains.It is essential that policymakers approach procurement with a more holistic perspective that prioritises economic development and job creation over a narrow focus on achieving the lowest possible price.By adopting this high-level mindset,governments will allow wind power original equipment manufacturers(OEMs),developers,shipping companies and other actors in the supply chain to invest,ensuring an optimal balance between supply and demand,and delivering benefits for all.Facing up to the size of the challengeGearing up to deploy huge volumes of wind power capacity is a far from straightforward task.Adding 1 TW in seven years,when it took around 40 years to install the first TW,is no mean feat.Following a difficult patch of retrenchment,the wind energy manufacturing industry is now facing the prospect of a rapid upturn.Spare capacity is very limited,and likely to disappear by 2026 unless urgent action is taken to invest in the supply chain.Our analysis in Part 2 shows that 163 GW of nacelle production capacity is available worldwide,which is likely to meet projected global demand up to 2027.But the picture is less rosy for offshore wind.Starting in 2026,Europes existing offshore turbine nacelle assembly capacity will no longer be able to support growth outside of Europe,and by 2030 it will have to double from current levels to meet European demand alone.Elsewhere,nacelle bottlenecks look likely in Asia(excluding China)and in the Americas,especially once the pipeline of Brazilian projects starts being rolled out.Shortages are expected to emerge in the second half of this decade for key components such as blades and generators.Gearbox manufacturing capacity is well positioned to support growth up to 2027,but a concentrated supply chain and regionalised sourcing strategies look certain to create bottlenecks.China dominates the global supply chain for other crucial components Spare capacity is limited and will likely disappear by 2026 unless urgent investment is made in the supply chainGWEC.NET 12Policy summarysuch as castings,forgings,slewing bearings,towers and flanges,with a market share of more than 70%.Vessels used in offshore installations are expected to be in sufficient supply in China,but Europe could see shortages towards the end of the decade,unless investments are made before 2027.And the US,with its Jones Act restrictions,will certainly struggle to meet the Biden Administrations target of 30 GW of offshore wind by 2030 unless it acts to build new vessels.In sum,both Europe and the US are facing the risk of supply chain shortfalls as soon as 2026,particularly if they follow through with some of the reshoring policies that several countries and regions are rolling out to strengthen energy resilience and boost local industry.Supply chain pressures will alter market dynamics Paradoxically,just as renewable energy proves itself as the most cost-effective form of energy and the one best insulated from the vagaries of geopolitical pressures,wind energy runs the risk of seeing its progress thwarted by the practical implications of untapping its immense growth potential.As countries and regions compete for investment,the winners will be those with the most attractive market conditions and the most effective regulation.Policymakers must tread the narrow path that enables an adequate level of trade to ensure the energy transition is not delayed while boosting opportunities for their domestic supply chains.Efforts to boost energy security and strengthen the local economy have led some countries to reach beyond manufacturing to achieve local supply of critical inputs for their industries,including steel products and raw materials such as rare earth elements(REEs).This has the potential to severely limit the industrys capability to upscale.When considering the localisation or reshoring of their energy sector,governments have choices:they can use incentives or preferential treatment for domestic suppliers or reserve the procurement of certain goods or services for them.GWEC advises against prescriptive localisation requirements or restrictive trade practices,which could lead to price increases and disruption.It argues instead for flexibility that can build on national and regional competitive advantages,giving OEMs and the supply chain more flexibility in optimising their production.An incentive-based approach will also give the wind industry the confidence to overcome recent challenges and begin to scale up for the next phase of global growth.The scale of the investment and production needed to achieve the energy transition will require continued global and regional collaboration and the scaling up of investment everywhere.Policymakers must come together to design mechanisms that make the relevant inputs for the energy transition freely available around the world.Policymakers have the power to avoid the crippling bottlenecks that are likely to arise if supply chains do not rise to the challenge of the growing demand for equipment.But they must ensure they engage in early and open dialogue with industry to ensure that policy goals and industry action are aligned.If designed properly and comprehensively,policies designed to enable the scaling up of the supply chain and its diversification represent a huge opportunity for the world.For the wind industry to meet the expectations of policymakers and society at large,it is essential that investment starts right now in new industrial capacity,and in training and skills.In the absence of such impetus,the industry runs the risk of falling short of what is required to deliver the necessary capacity,leading policymakers to turn to less efficient alternatives,and ultimately causing society to miss its climate targets.WIND ENERGY:THE COMING ACCELERATIONGWEC.NET 14The coming renewables accelerationThe prolonged period of high energy prices the world experienced in the aftermath of the COVID-19 pandemic,sharply exacerbated by the Russian invasion of Ukraine,has exposed the fact that we are suffering a deep energy crisis.This is a consequence of a patchy and delayed energy transition,which has left energy markets vulnerable to volatile fossil fuel supply much of which is driven by political agendas and anti-competitive practices.As well as exposing consumers and industry to high energy prices,the crisis has been a significant contributor to the return of inflation as the major challenge for the worlds economy.Meanwhile,the impacts of accelerated global heating are becoming ever clearer at the same time as countries continue to delay taking the actions needed to achieve the emissions trajectory outlined in the Paris Agreement.However,the current polycrisis has not gone unanswered by society in general and policymakers in particular.The drive towards lowering emissions and prioritising sustainability continues to gather momentum.The past year has seen governments around the world take unprecedented steps to speed up the energy transition and wean their economies off their dependence on fossil fuels.Whether through the Inflation Reduction Act in the US,the REPowerEU program in the EU or enhanced national plans,the policy environment has evolved quickly over the past 12 months.This in turn has led to countries and regions setting new,highly ambitious targets for renewable energy and for the phaseout of fossil-based technologies in generation,transport and industry.The leading intergovernmental energy agencies agree that renewable energy and the two leading technologies of wind and solar especially will dominate electricity demand growth in the coming period.According to the International Energy Agency,renewable energy will provide 98%of the 2,518 TWh of electricity generation to be added between 2022 and 2025.1 GWEC expects 680 GW of wind capacity to be added globally between 2023 and 2027,of which 130 GW will be offshore.Onshore wind in China will continue to lead installations with 300 GW,followed by Europe with nearly 100 GW.Offshore wind will play an increasingly large role with projected global additions of more than 60 GW between 2023 and 2025,and 68 GW in 20262027.Wind energy is expected to achieve the milestone of 1 TW of installed capacity by the middle of this year.In a recent report,BloombergNEF(BNEF)forecast that,having taken 33 years to reach 1 TW,wind will deliver close to another TW by 2030.2 The coming renewables acceleration1.https:/www.iea.org/reports/electricity-market-report-20232.https:/ 15%New installations outlook 20222026(GW)Source:GWEC,2023GWEC|GLOBAL WIND REPORT 2023 15The coming renewables accelerationA new geopolitical eraPolitical conditions that have made wind deployment difficult in many countries are beginning to shift,as our heat map illustrates.There are only a few places now where wind power is neither in existence nor planned.Under the leadership of President Luis Incio Lula da Silva,Brazil is looking at wind energy as a vehicle for achieving climate goals while boosting economic growth.As it continues to move away from regulated auctions and towards corporate power purchase agreements,the Brazilian wind energy sector gains resilience and prepares for a very bright future.On the other side of the globe,India is targeting wind capacity additions of more than 60 GW onshore and nearly 40 GW offshore by 2030.It is also looking to seize supply chain opportunities,particularly by capitalising on the role of micro,small and medium enterprises(MSMEs)in the Indian wind manufacturing sector.After a spell of virulent anti-wind rhetoric under the Trump administration albeit with continued economics-led growth of the sector President Biden has enacted a dramatic change of direction,both through restating the USAs climate leadership in international forums,and through the Inflation Reduction Act(IRA).This landmark piece of legislation offers funding,programmes and incentives for accelerating the transition to a clean energy economy across multiple sectors.The prospects for offshore wind,in particular,are very exciting.The EU,for its part,is laying out a multi-pronged approach to boost European industry while achieving energy and climate goals.Renewable energy projects could be given priority permitting in special go-to areas under new provisions being considered in the upcoming revision to the Renewable Energy Directive,while the REPowerEU package offers renewables a 20 billion EUR funding pot.India Annual target of 8 GW onshore wind tender every year between 2023 and 2030 based on a single-stage two-envelope bid system.MNRE published a strategy paper outlining a tender trajectory of 37 GW of offshore wind by 2030 Indian government and industry seizing supply chain opportunitiesEgypt 42%renewable energy by 2035 with support of Green Corridor Initiative Installations projected to rise from 1.7 GW to 8 GW by 2030 Multi-GW scale projects in early stages of developmentChina 50 GW of planned installations during the 14th Five-Year Period(20212025)Projected annual installations of 7080 GW until 2030 Local industry ready to support annual installations of approximately 15 GWAustralia New national government supportive of onshore and offshore wind development Offshore Electricity Infrastructure Regulations released Announced areas for offshore wind in Gippsland(Victoria)Brazil Cross-party support for wind energy as a driver of economic growth and job creation ABEElica expects annual additions in the region of 3 GW for onshore wind over the next decade Offshore wind and green hydrogen expected as additional drivers for wind energy developmentSouth Korea Wind energy target increase from 2 to 34%,as part of a 30%renewables target by 2036 Projected 34 GW of installed wind energy by 2036 New government implementing a One Stop Shop Bill to fast-track project developmentStrong installed capacity increase,new ambitious targets and/or policy improvementAdequate targets and policies,but not matched by expected progressLack of progress or regressionTunisiaOffshore wind by 205030 GW60 GW300 GW17 GW28 GW9 GW15 GWWind energy by 2030Victoria-offshore wind by 2040 No federal targetsWind energy by 203045%Wind energy by 20305%Offshore wind over 20262035(1.5 GW/yr)10 GWOffshore wind targets of 10 GW by 2030 and 3045GW by 2040 Renewable energy by 2030Offshore wind by 2030Offshore wind by 2030100%Renewable power by 2030100%Renewable power by 2030MongoliaAustraliaIndonesiaThailandIndiaChinaKazakhstanUzbekistanSaudi ArabiaEgyptAlgeriaMauritaniaBrazilArgentinaChilePeruColombiaCosta RicaMexicoUnited StatesCanadaNigeriaMoroccoEUUKSenegalSouth AfricaEthiopiaKenyaTanzaniaVietnamPhilippinesTaiwanSouthKoreaJapanUruguayGhanaNambiaMozambiquePolicy heat mapGWEC.NET 16The coming renewables accelerationAdditionally,the EU is looking to introduce legislation that would simplify and fast-track permitting procedures for climate-neutral industrial infrastructure,with the goal of boosting Europes key green industries and their full value chains.Efforts are also being made to reduce dependence on non-EU sources of raw materials and rare earth elements(REEs).Responding to burgeoning demandDemand for wind energy continues to grow and expand.The trend towards corporate power purchase agreements shows no sign of slowing down,and large companies from outside the energy industry are increasingly keen to invest in wind development.BloombergNEF estimates that offshore wind financing activity will hit new records in 20233,with more than 30 GW of new projects getting the go-ahead,over half of which will be outside China.Floating offshore technology is making steady progress and will open up previously untapped markets.However,the promise of massive expansion risks colliding with the reality of delivering turbines on land and in the water.The industry is emerging from several difficult years,during which turbine manufacturers have suffered financial losses and policymakers have often failed to provide the optimal conditions for fast and efficient market development and the necessary grid buildout.While technological advances are happening across the sector from Chinas continued lead in upsizing turbine components,to global efforts to improve the circularity of traditionally difficult-to-recycle epoxy-based turbine blades4 there is a danger that an industry scarred by years of financial losses may retreat into caution and protectionism.This would be the worst possible scenario both for the wind industry and the energy transition as global supply diversification has supported the reduction of winds LCOE.As gigawatt-level projects kick off in new and traditional wind markets across the globe,GWEC anticipates a flurry of orders for turbine manufacturers everywhere,and pressure on all elements of the supply chain as a result.It is essential that the industry gears up to respond to this challenge by thinking strategically about the road ahead and setting itself up to deliver on its ambition,supported by adequate policies.A turning point for windHaving achieved impressive learnings and economies of scale over the past two decades,wind is now a mature sector which,like more traditional energy sources,reacts to external factors such as commodity prices,interest rates and political support rather than its own internal dynamics.No longer the new kid on the energy block,the wind sector is at a turning point facing up to a host of new challenges while looking to deploy massive amounts of additional capacity in an ever-growing number of countries.Such a huge rise in wind power development can only materialise if governments play their part,through supportive and stable market conditions,in allowing the wind industry to scale up to the ambitious targets it is expected to deliver.In an increasingly interconnected world,the wind sector must prove that it can continue to innovate,collaborate and integrate.From the role of women and minorities in the industry to the wide-ranging challenge of sustainability,GWEC is determined to facilitate connections between the many stakeholders the sector affects.Having long established its credentials as a reliable,effective,efficient and cost-competitive technology,the wind industry now needs the right conditions to step up to the level that is required of it to fully deliver on its promise of cleaner and cheaper energy for all.3.https:/ 1:A NEW ENERGY MARKETGWEC.NET 18Part 1:A new energy marketIn 2022,the world saw many of its long-established paradigms shattered by a number of deeply transformative events.Inflation reached levels not seen since the massive disruptions of the 1970s driven at both times in large part by commodity price increases.The unprovoked attack on Ukraine by Russia laid bare the worlds dependence on fossil fuels and the energy insecurity that comes with it.As Russia is the worlds second largest gas producer,this dependence came at a steep price for gas-importing countries,causing surges in the prices of everything from fertilisers to heating and power and causing low-income countries to suffer the most.The global response has been to focus on energy security and resilience.Governments introduced measures to make energy affordable by utilising all available energy sources,including coal,gas and nuclear,and by committing to developing more renewables in the latter part of the decade.The short-term focus on affordability and the subsequent increased use of fossil fuels led to an increase in global carbon emissions1,even with nearly 80 GW of wind power and more than 200 GW of solar capacity installed2.What this tells us is that installing 300 GW of renewables in one year is not enough to curb a rise in carbon emissions.A tipping point for wind energyAmid the turmoil of 2022,it is clear that we have reached a tipping point for renewable energy in general and for wind power in particular.In Europe,the REPowerEU3 programme has committed the bloc to weaning the continent off Russian gas by 2030(or sooner).The policy also seeks to remove bottlenecks to permitting and other hindrances to the deployment of renewable energy projects.The US passed the Inflation Reduction Act(IRA)4,transforming the way the country approaches renewables,decarbonised transport,energy storage,the electricity grid and energy efficiency.The act has already accelerated large amounts of investment.Approval of Chinas 14th Five-Year Plan5,covering the 20212025 period,paves the way for innovation-driven,sustainable and low-carbon development.The plan also aims to reduce the carbon intensity of the Chinese economy and targets peak CO2 emissions before 2030.A new energy market202128,00028,50029,00029,50030,00030,50031,00031,50020252022CoalOilGasNuclearRenewablesProjected changes in global electricity generation(TWh)by sourceSource:IEA,20231.https:/www.carbonbrief.org/analysis-global-co2-emissions-from-fossil-fuels-hit-record-high-in-2022/2.https:/ 4.https:/www.epa.gov/green-power-markets/inflation-reduction-act 5.https:/www.adb.org/publications/14th-five-year-plan-high-quality-development-prc GWEC|GLOBAL WIND REPORT 2023 19Part 1:A new energy marketSignificantly more wind will be required to achieve those goals.Substantiating this trend,the International Energy Agency(IEA)s Electricity Market Report 2023 sees renewable energy sources supplying pretty much the totality of the additional electricity generated between 2022 and 2025.6In its Renewables 2022 report the agencys primary analysis of the renewable energy sector the IEA forecasts capacity additions reaching record highs through 20277,led by solar and wind.It expects annual additions to range from 350 GW in the main scenario to 400 GW in the accelerated case.What does a wind energy boom mean?Wind power is not just growing bigger,it is also spreading more widely.Beyond the current world leaders,many other countries are also refocusing on renewables driven both by the insecurity of relying on fossil fuels and the desire to remain economically competitive.Economic drivers are becoming increasingly important as companies globally commit to environmental,social and governance(ESG)goals that require them and their suppliers to decarbonise.This is a mega-trend to watch as GWEC believes the demand side will become much more vocal in its desire to see more renewables come online to help them and their suppliers meet their decarbonisation targets.An example of this is the Asia Clean Energy Coalition8 launched by GWEC,the World Resources Institute and The Climate Group and including Google,Apple,Samsung,Nike and many other large corporates with significant commitments to decarbonise.But while these trends and commitments are very positive for renewables in general and wind energy in particular,there remains much to do to fully enable the renewables sector to deliver the ambitious deployment levels required to achieve these wider ESG goals.Take,for example,the supply of wind turbines.Based on the 050100150200250300202120222020201920182017201620092008200720062005200320042015201420132012201120102016=100Commodity Price Index01234567202120222020201920182017201620092008200720062005200320022004201520142013201220112010Historical London Interbank Offered Rate(LIBOR,%)6.https:/www.iea.org/reports/electricity-market-report-20237.https:/www.iea.org/reports/renewables-2022 8.https:/ 20Part 1:A new energy marketGWEC Market Intelligence database of global wind supply side,the industry had a potential turbine production capability of 120 GW in 2020.Since 105 GW of turbines were delivered in 2021,that leaves approximately 10%of spare capacity.However,because of low profitability in 2021 and 2022,many turbine manufacturers have cut back on staff and closed some production facilities.As the industry starts to grow again,will turbine manufacturers have enough visibility on turbine demand to rapidly ramp up production capacity?Another significant recent trend is the growing ChinaUS/EU tension on trade and other policies,possibly marking a move away from globalisation in an attempt to shore up regional economies and security of supply.What are the implications for wind energy,especially with China being such a dominant producer across the renewables supply chain?These are some of the questions we will look to address in detail in later chapters of this report.At the high level,it seems inevitable that a significant,global ramping up of production capacity will be needed to meet fast-growing demand.All energy costs are on the upFollowing the massive disruptions to supply chains caused by the COVID-19 pandemic,energy demand bounced back as economies reopened.Stretched supply chains tried to balance supply with demand,while shipping and logistics bottlenecks added to the strain.Prices for a range of goods,from cars and wind turbines to washing machines and food,rose dramatically.Meanwhile,as inflation soared,central banks became concerned about its impacts on the economy and embarked on a series of interest rate rises,leading the cost of capital to also increase.Higher cost of capital leads to increased costs for all investments.The historically high commodity prices seen in the last two years,and the upturn in the cost of capital seen in 2022 as central banks tightened monetary policy,has impacted all energy sources worldwide.From 2010 to 2020,Newcastle coal futures,the benchmark for the top 01020304050602021202220202019201820172016201520142013LNG spot prices in Asia(USD/mmbtu)0Q1Q2Q3Q4Q1Q2Q3Q4Q1Q2Q3Q4Q1Q2Q3Q4Q1Q2Q3Q4Q1Q2Q3 Q4200201920202021202220232024400Indexed electricty price(Q1 2019-=100)60080010001200European indexIndiaNordicsAustraliaJapanUnited StatesSpainUnited KingdomFranceGermanyAverage quarterly wholesale electricity pricesSource:IEA,2023Source:Federal Reserve,2023GWEC|GLOBAL WIND REPORT 2023 21Part 1:A new energy marketcoal-consuming region of Asia,ranged between$50/tonne and$120/tonne9.After sharp increases in 2021,they averaged$350/tonne in 2022,making the cost of coal-fired power generation substantially higher than the cost of wind in almost every country.And that is before the cost of carbon or its abatement is even taken into account.Over the past two years,prices for Asian liquified natural gas(LNG)have spiked against 2020 levels.While most LNG-importing countries have long-term contracts in place,they are unlikely to cover 100%of demand,leaving countries exposed to importing spot cargoes.This has come at a very high financial cost,particularly in the past year.And because LNG markets are global the price impacts are felt globally.These trends contributed to a historic increase in wholesale electricity prices.Average quarterly wholesale electricity prices spiked in much of the world through the end of last year,and while the IEA projects prices to drop in 2023,the projections are not close to where they have been in previous years.Equipment manufacturing for gas-fired and coal-fired generation as for wind and solar generation has benefited from the efficiency improvements achieved over the decades.But with high inflation and massive disruptions to global supply chains,coupled with higher expenditure in shipping and logistics,the capital cost(CAPEX)of electricity generation for all technologies has risen.Wind has achieved significant cost reductions over the last 20 years and the wind industry is now considered fairly mature,especially onshore wind.Offshore wind is newer but,having been commercial for at least 15 years,it is also reaching maturity.This means that the dramatic price reductions that we have seen historically are likely to slow and future cost fluctuations in the cost of wind are likely to reflect the underlying cost of capital,commodity costs(steel,copper),and logistics costs,as noted above.For example,the cost per kilowatt(kW)for a gas-fired turbine,a mature technology,has been roughly 1,000 USD/kW for the last 20 years( /-30%)with the variation caused by the usual movements in supply and demand,and particularly by the cost of materials such as steel and copper.10 There is no reason to think that wind,as it matures,will act differently.Relative costs of wind power remain lowThe cost profile of electricity generated from wind and solar energy versus electricity generation powered by traditional fossil fuels appears very favourable it has been for some time and will continue to be.050100150200250201420152016201720182019202020212022Coal USCCGT UKCCGT JapanWind onshore UKWind offshore UKWind onshore USPhilippines coalJapan coalHistorical LCOE by technology(USD/MWh)9.https:/ 22Part 1:A new energy marketWind power still maintains price advantages in most countries,even without considering the impacts or future carbon pricing schemes.There is no reason why wind power should lose its price advantage over LNG and coal in most markets globally.To make wind power as cost-efficient as possible going forward,it is essential that governments continue to provide visibility on future demand through ambitious nationally determined contributions and sectoral targets while introducing enabling regulations and removing bottlenecks in permitting and other phases of development.From cost to valueAt the same time,to achieve their ambitions,countries will also have to move decisively to fix current market and regulatory imbalances,which have seen leading companies in the wind industry supply chain declare losses over a period of several years while fossil fuel-producing companies make record profits.This situation,referred to by leading commentators in the energy sector as a bizarre paradox,has been a colossal market failure,according to GWEC CEO Ben Backwell.11 Poor market design and procurement have led to a race to the bottom on wind pricing,while inflationary pressures combined with government price caps have exacerbated the squeeze on profitability.As we shall see,this in turn has led to underinvestment in manufacturing and has created the likelihood of supply chain bottlenecks in the years to come.In order to enable the huge amounts of supply chain investment needed to meet increased demand,governments and regulators will need to act smartly to fix current market imbalances and set the stage for growth.While the focus over the last two decades or more has been on achieving cost reductions,with procurement arrangements largely led by concerns from treasury departments,policymaking now needs to focus on the societal and economic value of wind energy.Wind energy is already highly competitive compared with fossil fuels and nuclear,but its wider social value needs to be recognised in market and procurement frameworks.Wind energy,in combination with other renewable energy technologies,is the most efficient way of decarbonising power systems.The evidence shows that a failure to deploy wind rapidly enough carries with it far higher costs in terms of exposure to fossil fuel volatility,geo political pressure and higher carbon emissions leading to damage from climate change.Wind energy has the potential to create tens of millions of new skilled jobs around the world and act as a catalyst for trillions of dollars of investment.It is essential that policymakers move the discussion around procurement away from a narrow focus on achieving the lowest price possible,to one around how they can achieve the maximum amount of economic development and job creation,while moving rapidly to fulfil their emission reduction targets.GWEC and its member companies,alongside sister organisations and partners like IRENA and the IEA,are working hard to achieve the necessary change in focus and create improved market and regulatory conditions for a rapid and confident transition.This will allow wind original equipment manufacturers(OEMs),developers,shipping companies and other actors in the supply chain to invest,ensuring an optimal balance between supply and demand,and delivering benefits for all.In later sections of this report,we look at how policy discussion is shifting in key markets for the renewables transition.But first we examine the current state of the global wind supply chain and discuss the potential impact of policies aimed at achieving a larger share of national and regional content in wind turbine manufacturing.11.Wind Powers Colossal Market Failure Threatens Climate FightPART 2:CHALLENGES IN THE SUPPLY CHAINGWEC.NET 24Part 2:Challenges in the supply chainWhile 2022 saw only 78 GW of new capacity connected worldwide,the market is ready to bounce back in 2023,primarily driven by expected explosive growth in China.Cumulatively,nearly 940 GW of wind power had been installed globally(without taking into account grid connection)by the end of 2022.GWEC Market Intelligence forecasts that the 1 TW milestone will be reached sometime mid-2023.What is the expected demand in this decade?Compared with the 2030 global outlook released alongside last years Global Wind Report,GWEC Market Intelligence has increased its forecast for total wind power capacity additions for 20232030 by 143 GW(13%YoY).The main reasons behind this upgrade include:l Energy system reform in Europe,replacing fossil fuels with renewables to achieve energy security in the aftermath of Russias invasion of Ukraine;l Chinas commitment to further expand the role of renewables in its energy mix;l An anticipated ten-year installation uplift in the US,driven by the passage of the IRA.Although the revised rate of wind growth is still not rapid enough to enable the world to achieve its Paris Agreement targets or net zero by 2050,GWEC believes the milestone of a second TW is likely to be passed before the end of 2030 provided the anticipated growth materialises in the three key wind markets of China,Europe and the US.What is the state of the global wind supply chain?As the birthplace of the wind industry,Europe enjoys a mature supply chain spanning from turbine nacelles through to key components and raw materials.However,since establishing a local wind supply chain in 20082010,China has not only become the worlds leading wind turbine manufacturing base,but also the largest production hub for key components and raw materials.Challenges in the supply chain202020212022202320242025Installations need to grow 5xOr we reach only 68%of the wind power required by2030 to stay on track for a net-zero/1.5C pathway20262027202820292030New wind capacityNew global installations(GW)Cumulative global installations(GW)Projected new wind capacity based on current growth ratesAnnual capacity gap to meet net zero by 2050 scenariosCumulated wind capacity to meet net zero by 2050 scenarios0509594781151251351501571691801902 TW1 TW10015020025030035040004008001,2001,6002,0002,4002,8003,200The 2 TW milestone is expected to be achieved in just seven years15423Worlds top five wind turbine and component production hubs by annual outputSource:GWEC Market Intelligence,February 2023Source:GWEC Market Intelligence;IEA Net Zero by 2050 Roadmap(2021);projected new wind capacity from 2023-2030 assumes a 7.2GR,which is based on GWECs Q1 2023 Global Outlook;capacity gap figures are estimations based on the IEA Roadmap milestone for 2030.Cumulative global installations for wind energy are roughly in alignment with the IRENA World Energy Transitions Outlook:1.5C Pathway(2021).This data represents new and cumulative capacity and does not account for decommissioned projects.GWEC|GLOBAL WIND REPORT 2023 25Part 2:Challenges in the supply chainEuropean and American turbine OEMs decided to diversify their supply chain to ensure security of supply,in the aftermath of the COVID-19 pandemic.India,the second-largest Asia-Pacific(APAC)hub for turbine assembly and key components production,has since gained an increasingly prominent role in the global wind supply chain.While most of the suppliers to the wind industry are still based in APAC,Europe and the Americas,new entrants have also emerged in the Middle East and North Africa(MENA)region.Will there be enough supply chain capacity to feed growth?Turbine nacellesGlobally,there are 153 turbine assembly plants currently in operation,with another 74 facilities either under construction or in the planning stage.China has more than 100 nacelle assembly facilities in operation and another 64 under construction.With a turbine nacelle production capacity of 98 GW per year,the country accounts for 60%of the global market share,making it by far the worlds dominant turbine nacelle manufacturing hub.Europe is the worlds second-largest turbine nacelle production base,with assembly facilities mainly located in Germany,Denmark,Spain,France,Portugal and Turkey.The US is the worlds third-largest wind nacelle manufacturing hub,followed by India and LATAM primarily Brazil.Globally,163 GW of nacelle production capacity is available in 2023.At first glance,the wind industry appears to have enough nacelle assembly capacity to meet the projected global demand up to 2027.However,the picture is different if separate benchmarks are applied for onshore and offshore wind,especially at a China(incl.capacity from three western turbine OEMs)60%Europe 19%US 9%India 7%LATAM 4%Other(APAC excl.China and India)13 GWGlobal wind turbine manufacturing capacity in 2023Overview of global wind turbine nacelle facilities China Europe IndiaUSA LATAMAsia Pacific Africa&METotal Total number of nacelle assembly facilities(onshore)77(4)*16134631123Total number of nacelle assembly facilities(offshore)20(1)*50 004030Number of announced nacelle assembly facilities(onshore)1702 000019Number of announced nacelle assembly facilities(offshore)4710 304055*facilities owned by western turbine OEMsNote:Wind turbine manufacturing capacity refers to wind turbine nacelle assembly capability and doesnt represent actual nacelle production in 2023.Source:GWEC Market Intelligence,February 2023GWEC.NET 26Part 2:Challenges in the supply chainregional level.Challenges in the supply chain for onshore wind nacelles China dominates global onshore wind turbine nacelle assembly with 82 GW of identified annual capacity.Out of this total,12 GW is from the three western OEMs:Vestas,SGRE and GE Renewable Energy.With 21.6 GW of annual assembly capacity per annum,Europe is the worlds second largest onshore turbine nacelle production base,followed by the US(13.6 GW),India(11.5 GW)and LATAM(6.2 GW).When we compare these production capacities with the onshore wind demand projected for this decade,we conclude that the supply chain in China,India and LATAM will have enough nacelle production capacity to accommodate demand,while the rest of world,in a business as usual scenario,will continue to Onshore turbine nacelle capacity in China,202382,000MWOnshore turbine nacelle capacity in India,202311,500MWOnshore turbine nacelle capacity excl.China&India,2023RoW 1%(350)LATAM 15%(6,150)Europe 52%(21,600)Chinese turbine OEMs 85%(70,000)Chinese turbine OEMs 11%(1,200)Indian turbine OEMs 39%(4,500)Western turbine OEMs 15%(12,000)Western turbineOEMs 50%(5,800)North America 32%(13,650)41,750MWOnshore wind demand and supply benchmark,20232030(MW)Demand vs supply analysis 2023-2030(MW)2023e2024e2025e2026e2027e2028e2029e2030eEurope1450017750189202095023290235002400025000US80009000100001300015000170001800020000LATAM58605362520050505030500050005000China6000060000600006000060000650006500065000India34004200450047004500450050005000RoW56199955104241356013705140001430015000Global97379106267109044117260121525129000131300135000l Sufficient l Potential bottleneckSource:GWEC Market Intelligence,March 2023Source:GWEC Market Intelligence,February 2023GWEC|GLOBAL WIND REPORT 2023 27rely on imported wind turbines to cope with the anticipated growth.For Europe and the US,we expect sufficient supply throughout this decade if western turbine OEMs can smoothly mobilise the capacity they own in China and India.However,if the free flow of the global wind supply chain is interrupted by proposed regional initiatives such as Made in Europe and Made in the USA and no new nacelle assembly capacity is built at the same time we expect to see supply chain constraints in both regions by the middle of this decade.Even assuming that all of the existing nacelle production capacity in Europe and the US can be fully utilised an unlikely occurrence as buffer room is normally required to ensure suffcient supply and production capacity will be impacted by the introduction of new onshore turbines with greater power rating we foresee a bottleneck occurring from 2026.Challenges in the supply chain for offshore wind nacellesCompared with onshore wind,the supply chain for offshore wind turbines is more concentrated,due to the fact that more than 99%of total global offshore wind installation is presently located in Europe and the APAC region.Expected offshore turbine nacelle capacity excl.China,202415,200MWOffshore turbine nacelle capacity in China,202316,000MWOffshore turbine nacelle capacity excl.China,2023North America 0%Europe 83%(9,500)Europe 76%(11,500)China(CN OEMs)94%(15,000)APAC excl.China 17%(1,900)North America 0,400MWAPAC excl.China 24%(3,700)China(non CN OEMs)6%(1,000)Offshore wind demand and supply benchmark,20232030(MW)Demand vs supply analysis 2023-2030(MW)2023e2024e2025e2026e2027e2028e2029e2030eEurope5760295570021003612143154032144025950China1000012000120001500015000150001500015000APAC excl.China17511569288426153855477069007900North America5351660378047504460450045005000LATAM0000005001000Global1804618184256663240135458396734834054850l Sufficient l Potential bottleneckSource:GWEC Market Intelligence,March 2023Source:GWEC Market Intelligence,February 2023Part 2:Challenges in the supply chainGWEC.NET 28Part 2:Challenges in the supply chainChina is the worlds number-one offshore turbine nacelle production centre with annual assembly capacity of up to 16 GW,of which 1 GW is owned by one western turbine OEM.Excluding China,the APAC region has an offshore turbine nacelle capacity of 1.9 GW,mainly located in Taiwan and South Korea.In Europe,current nacelle assembly capacity for offshore wind is about 9.5 GW,which we anticipate reaching 11.5 GW next year when a new nacelle facility comes into operation in Eastern Europe.No offshore turbine nacelle assembly facility is currently in operation in North America,although GE Renewable Energy,SGRE and Vestas have announced nacelle investment plans for New York and New Jersey in Q1 2023.Similar to North America,LATAM has no offshore nacelle assembly facilities despite Chinese turbine OEM Mingyang looking for offshore wind investment opportunities in Brazil since 2020.Looking at the demand and supply situation for this decade,our benchmark results show more challenges for offshore wind than for onshore wind.GWEC Market Intelligence does not see any problems arising in the near term,given that European OEMs are able to share spare offshore nacelle assembly capacity with emerging markets in APAC and North America in 20232024.However,the situation is going to change.Starting in 2026,we expect Europes existing offshore turbine nacelle assembly capacity to no longer be able to support growth outside of Europe.In fact,we expect that from 2027 Europes offshore wind turbine nacelle assembly capacity will struggle to cope with the growth expected in Europe alone.Existing capacity needs to double in order to meet the projected demand for this region in 2030.Looking at APAC(excluding China),although offshore turbine nacelle capacity is likely to increase to 3.7 GW after expansion work is completed at one of the existing facilities in 2024,it will still be insufficient to meet demand in this region from 2027.Taking into account estimates that demand for offshore wind turbines in this region will reach 7.9 GW in 2030,it is imperative that the investment plans announced by western OEMs in partnership with Japanese and Korean firms materialise in time.In the US,considering local content requirements(LCRs)associated tax credits and incentives under the IRA and the two-year lead time needed to build a new offshore wind nacelle production facility from scratch,it is of the utmost urgency that GE Renewable Energy,SGRE and Vestas turn their investment plans into concrete action.There are no plans for offshore wind projects to be built in LATAM until the latter part of this decade.However,early investment is needed to avoid bottlenecks.This is especially true of Brazil,where 71 offshore wind projects,totalling more than 170 GW,had filed environmental investigation licences by the end of 2022,according to the countrys Ministry of Mines and Energy.Key components GWEC Market Intelligence has been monitoring the supply chain for key wind turbine components since 2019.Based on our latest supply chain update,no bottlenecks are expected in 20232024 for key components such as GWEC|GLOBAL WIND REPORT 2023 29Part 2:Challenges in the supply chainblades and generators,but further investment in both components is needed to accommodate growth after 2024.Following recent investment,gearbox manufacturing capacity is well positioned to support the expected growth up to 2027.A concentrated supply chain and regionalised sourcing strategies,however,look certain to create bottlenecks.It is also important to note that the supply chain for key components is highly dependent on China.In addition to gearboxes and generators,China controls the global supply chain for castings,forgings,slewing bearings,towers and flanges with more than 70%global market share.How other regions enact policies designed to reshore production or restrict trade will have a strong impact on the supply picture and on cost.Global WTG generator manufacturing capacity in 2022125GWGlobal wind gearbox manufacturing capacity in 2022160GWGlobal WTG blade manufacturingcapacity in 2022China 60%Europe 14%India 11%US 7%LATAM 7%Other APAC 1%China 65%Europe 22%India 7%LATAM 3%Other APAC 3%China 75%Europe 12%India 12%Other APAC 10GWGlobal wind key component supply chain overviewSource:GWEC Market Intelligence,February 2023GWEC.NET 30The increasingly ambitious wind energy targets being set to reduce reliance on traditional energy sources both in terms of geographical and material dependence present a challenge from a supply chain perspective.This is particularly true for rare earth elements(REEs),with top policymakers increasingly calling for de-risked supply chains.Wind energy uses large amounts of rare earth permanent magnets(REPMs),contributing significantly to global demand.Wind energy OEMs have faced challenges in obtaining the quantities of REPMs they need,despite supply growing at record speed and demand softening thanks to hybrid wind energy technologies increasingly replacing standard direct drive(DD)turbines over the past five years.Hybrid systems(medium-speed drivetrains)use just one-tenth of the REPMs needed in a DD drivetrain.In the fourth quarter of 2022,China accounted for 68%of rare earth mining and 94%of downstream processing.Only a meagre amount of materials was processed elsewhere,principally in Malaysia and Estonia.Because the wind industry is exposed to the impacts of geopolitical tensions and following a toughening of Chinas export restrictions of rare earth-related technologies there is growing policy and industrial concern in Europe,North America,Australia and elsewhere.While sourcing enough REPMs for wind energy generation can be difficult,the greatest challenge for the industry is being able to source them domestically or from a de-risked supply chain.In major markets such as Europe,the US and Australia,demand for REPMs in wind energy is substantially larger than local supply.Policymakers have made some efforts to bridge this gap,for example in the US,the UK and Australia,where Benchmark Mineral Intelligence(Benchmark)expects to see rapid processing capacity growth by 2024-2025.l The US Department of Defense has awarded two high-profile contracts to MP Materials and Lynas Rare Earths,at 35 million USD and 120 million USD respectively,to expand rare earth oxide(REO)separation capacity.Additionally,bill H.R.5033 proposes to support magnet producers in the US to help them compete with their Chinese counterparts.Benchmark forecasts Case study:Sourcing rare earth materials for wind energy from local supply chainsChina 68%China 94%Other 6%Other 32%ProcessingMiningChina dominated REE mining and processing in Q4 2022202720202019201820172016201420152026202520242023202220210 0,00014,00012,00010,0008,0006,0004,0002,0000Medium-speed driveDirect driveHigh-speed driveREPM consumption,tonnesWind turbine technology forecast(%)and equivalent direct REPM use(tonnes)Source:GWEC,Benchmark Mineral IntelligenceNote:This chart displays direct REPM use(magnet volumes)in DD and medium-speed drivetrains per annum.It is not normalised to final raw materials demand.Source:Benchmark Mineral IntelligencePart 2:Challenges in the supply chainGWEC|GLOBAL WIND REPORT 2023 31Part 2:Challenges in the supply chainactive production from multiple REPM facilities in the US,notably by MP Materials in Texas and USA Rare Earths in Oklahoma.l The UKs 850 million GBP Automotive Transformation Fund will develop Pensanas 145 million GBP separation facility at Saltend Chemicals Park,in northern England.This facility is expected to consume a growing input of external feedstocks as the facility scales and the companys own mine reduces production to produce separated oxide,and is the UKs largest effort to date to establish domestic rare earth processing.l In Australia,Iluka Resources has received 1.25 billion AUD in non-recourse financing from Export Finance Australia.This is part of the governments wider 2 billion AUD Critical Minerals Facility to establish the Eneabba refinery in Western Australia,with additional capacity to consume external feedstocks.While the pipeline of processing facilities in North America,Australia and Europe is significant,it will take time for the first inputs to be converted into saleable material,and to fund and construct the required facilities.The availability of locally processed and manufactured REPMs may be further limited,in the short and medium term,by offtakes securing sizeable portions of planned production for EV manufacturers.Whereas a facility such as Solvays La Rochelle,in France,may be able to scale up fast thanks to existing knowledge and experience,other parts of the puzzle need to align.Before a diversified,de-risked and sizeable local supply chain is established,more than 300 GW of additional wind power capacity may already have been built.Benchmark forecasts a more diversified and regionally scaled rare earth processing market beginning to take shape after 2025,particularly in Europe,North America and Australia.Environmental protections and economic concerns,such as high CAPEX requirements and low Chinese costs,together with considerable project lead times,cast a shadow on capacity addition forecasts,however.A large part of the wind industry will,as a result,have to rely on sourcing REPMs from China in order to meet clean energy demand in the short term.With input from Benchmark Mineral IntelligenceCase study:Sourcing rare earth materials for wind energy from local supply chains(continued)GWEC.NET 32Part 2:Challenges in the supply chainWind turbine installation vessels(WTIVs)According to GWEC Market Intelligences Global WITVs database 2022,China and Europe operate the majority of jack-up and heavy-lift vessels used for offshore wind turbine installation.No global shortage of WTIVs is expected up until 2026.Following an offshore wind installation rush in 2021,new installations in China slowed down in 2022,and we do not expect to see 2021-level installations again until 2026.In Europe,the current WTIV supply chain can cope with demand,given that annual offshore wind installations are relatively flat and unlikely to reach the 10 GW milestone until 2026 which also explains why European vessel operators are able to release their jack-up and heavy-lift vessels over the next two years to support the demand from emerging markets in Asia,mainly Taiwan and Japan,and the US.Looking at the supply chain situation for the 20272030 period,however,while GWEC Market Intelligence does not expect WTIV supply chain constraints in China,it foresees a likely shortage in Europe towards the end of this decade,unless investment in new WTIVs is made before 2027(assuming a lead time of three years for delivering a new WTIV vessel).In the US,where only two tailor-made Jones Act compliant WTIVs are currently under construction,plans for new WTIVs will have to be executed in the next two or three years to avoid bottlenecks,if the Biden Administrations target of 30 GW of offshore wind by 2030 is to be met.Restrictive trade policies could delay the energy transition The past three years have shown the exposure and vulnerability of renewable industries to geopolitical dependencies,commodity price cycles,logistics bottlenecks and trade barriers.The sudden post-lockdown recovery of industrial production in 2021 led to fierce competition for raw materials,as well as ongoing bottlenecks in manufacturing capacity.Russias invasion of Ukraine also deepened geopolitical concerns and intensified the existing trade tensions between China and other markets,such as Europe and the US.All of this has brought the urgency of building supply chain security for renewables to the top of the political agenda and created a global green investment race.The Inflation Reduction Act(IRA),signed into law by the Biden Administration in August 2022,promises to move the US closer to its climate goal.Its provisions on ax credits and LCRs associated incentives have generated concern in the EU and other countries about the IRAs potential negative impact on their domestic manufacturing industries.In response,the EU unveiled its Green Deal Industrial Plan,which aims to boost Europes cleantech competitiveness and to keep green investments at home.What we are witnessing now is a clear misalignment between government,industrial,trade and financial policies.It must be understood that without well-functioning and competitive global wind supply chains alongside equal access to raw materials and components the energy transition will not materialise.There is a danger that the restrictive trade policies proposed by the EU and the US may risk delaying the global energy transition.In operationUnder construction/planned01020304050607080Heavy lift(North America)Jack-up(Europe)4812Heavy lift(Europe)314Jack-up(North America)42Jack-up(China)4719Heavy lift(China)437Jack-up(Asia ex.China)410Heavy lift(Asia ex.China)8Number of wind turbine installation vessels in 2022Source:GWEC Market Intelligence Global Offshore Wind Turbine Installation Vessel Database,October 2022PART 3:THE RISKS AND OPPORTUNITIES OF REGIONALISATIONGWEC.NET 34As a result of the combined effects of geopolitical threats,climate imperatives and energy security challenges,the deployment of renewable energy capacity is expected to accelerate substantially over the coming years(see Part 1).This acceleration comes as countries and regions move to implement their ambitious energy and climate targets and is driven by continued cost advantages compared with fossil fuels.GWEC Market Intelligence has increased its forecast for additional wind power installations in the 20232030 period by 143 GW( 13%YoY).We now expect the first TW of wind power to be installed by mid-2023 and the second TW to be reached at the end of this decade.This massive increase in installations will create a need for significant additional capacity across the entire wind supply chain(see Part 2).For example,there are 153 turbine nacelle assembly plants in operation today,with another 74 facilities either under construction or in the planning stage.These assembly plants will need components from across the global supply chain,requiring substantial investment to meet demand.Our analysis in Part 2 also reveals that shortages for both nacelles and key components may develop in the US and Europe mid-decade if the free flow of the global wind supply chain is impacted by regional initiatives aimed at achieving Made in Europe and Made in the USA supply chains.GWEC is concerned that governments around the world do not understand the potential impacts of their poorly coordinated actions,which is why the availability of key data on supply chain development is critical,and why continuous dialogue with industry must be undertaken.The Inflation Reduction Act(IRA)provides significant incentives for US-based manufacturing,which could render uncompetitive any projects that do not use the levels of local content required to qualify for the extra tax incentives stipulated in the law.The EU has expressed serious concerns about the IRA,alleging it may breach WTO international trade rules,and has responded with its Green Deal Industrial Plan.Within this plan is the Net Zero Industry Act(NZIA),which requires national governments to apply non-price criteria defined as environmental sustainability,energy system integration,and contribution to the resilience of cleantech supply chains to procurement mechanisms.These measures would allow governments to award higher prices in procurement mechanisms to enable companies to invest in EU-based supply chains,and make production more sustainable through circular economy and other practices.However,policymakers should beware of introducing more Regionalisation and decoupling supply chains risks and opportunitiesGWEC|GLOBAL WIND REPORT 2023 35Part 3:The risks and opportunities of regionalisationCountry/RegionActions taken to reshore supply chainsUSAPassed Inflation Reduction Act(IRA)in August 2022.Provides a tax credit,the advanced manufacturing production credits(AMPC),for US-made renewable energy equipment,including vessels,with sunsets beginning in 2030.Extends the existing ITC and PTC to 2024 and then replaces them with the Clean Electricity Investment Credit and the Clean Electricity Production Credit,both applying to designated renewable energy and storage technologies.They sunset in 2032 or when the Treasury determines that annual greenhouse gas emissions from electricity production in the US are less than 25%of 2022 levels.Incentivises developers of US renewable projects to purchase domestically produced equipment by providing an additional tax credit if they meet domestic content requirement(DCR)thresholds.To qualify,onshore wind projects installed before 2025 must source 40%(20%for offshore wind)of all equipment in the US.This rises to 55ter 2026 (2027 for offshore wind).100%of steel and iron construction materials must be manufactured in the US.Requires certain wage and apprenticeship requirements to qualify for some of the incentives.Introduces other incentives to induce additional investment in everything from rural small business loans for energy efficiency to R&D grants.According to consultancy Wood Mackenzie,incentives under the IRA will cut the cost of solar,wind and storage equipment by anywhere from 20%to 60%.European Union The European Commission presented its Green Deal Industrial Plan in March 2023,consisting of a Net Zero Industry Act(NZIA)aiming to strengthen the EUs industrial base for clean technologies,a Critical Raw Materials Act(CRMA)to increase Europes capacity to source and refine critical raw materials,and more flexible state aid rules.The NZIA aims to support investment in manufacturing capacity in net-zero emissions technologies in Europe.For wind,it sets an annual manufacturing capacity target of 36 GW.The commission envisages a new Sovereignty Fund to support cleantech supply chains and identifies the EU Innovation Fund as a bridging instrument.The CRMA includes a list of materials important for the wind industry such as REEs used in permanent magnets,copper for cables and lithium for batteries.With the aim of building its own domestic critical raw materials supply chain,the CRMA wants the EU to extract at least 10%of the critical raw materials it uses from within Europe by 2030.At least 40%should be processed within the EU by then.Under the CRMA,15%of the EUs annual consumption of raw materials would need to be recycled by 2050.New EU State Aid Guidelines for Climate,Energy and Environment entered into force in January 2022,allowing governments to include up to 30%non-price elements in the selection criteria of their auctions.The NZIA now requires national governments to apply non-price criteria,defined as:environmental sustainability,energy system integration,and contribution to resilience of cleantech supply chains.More flexible state aid guidelines were also proposed for national investments in cleantech manufacturing under the Temporary Crisis and Transition Framework.This allows national governments,for a limited time,to support CAPEX investments in their national cleantech supply chains.It does not cover OPEX.The European Commission has imposed anti-dumping duties on towers imported from China,increasing tariffs from 7.2%to 19.2%.GermanyFollowing European Commission proposals to allow more state aid,Germany is considering offering financial support to investments in domestic energy transition supply chains,as well as wind and solar projects.UKThrough negotiation,the industry has agreed to a local content requirement(LCR)of 60%by 2030.According to the UK government,making a LCR reality will require“significant inward investment activity”on capex elements of offshore wind projects.PolandUnder the Polish Offshore Wind Sector Deal,a level of LCR must be achieved at different stages:“at least 20-30%”of a projects total value in the preparatory,installation and operational stage for projects implemented under the first,pre-auction stage of the support system;at least 45%for projects implemented by 2030 under the second,auction stage;and at least 50%for projects implemented after 2030.Japan&South KoreaBoth have strong requirements for local content in wind projects that effectively require localisation of parts of the supply chain.TaiwanHas produced a specified list of components that must be localised,depending on the completion date of offshore wind projects.GWEC.NET 36requirements and restrictions on industry that do not result in better rates of return for companies.The NZIA also sets an annual wind-turbine manufacturing capacity target of 36 GW for EU member states,which is more than double the 16 GW of wind turbines installed in Europe in 2022.However,unlike the clarity and long-term visibility provided in the IRA,the NZIA does not directly address the poor market conditions that caused the profitability of European wind turbine manufacturers to fall.Nor does it establish new EU funding or financing mechanisms to scale supply chains to the level required.Another key pillar of the EUs plan,the Critical Raw Materials Act,states that by 2030 10%of raw materials should be extracted and at least 40%of them processed in the EU.However,whats not yet clear is how the potentially higher costs of those materials will be distributed fairly among western supply chain companies.Many other major economies,including Japan,Korea,the UK,Poland,India,Taiwan,Saudi Arabia and Brazil already have or are in the process of designing measures to ensure high levels of local content in their wind energy sectors.The table below summarises some of the measures being introduced by major actors.Some countries are reaching well beyond manufacturing,going upstream to achieve local supply of critical inputs for their industries,including specific steel products used in the wind industry and raw materials such as rare earth elements.In some cases,this includes inputs that are currently not produced locally,or are produced in small quantities.The COVID-19 crisis and its aftermath(including widespread disruption of logistics and increased geopolitical tensions)have created a greater understanding of the need to create a more diversified and resilient supply chain.However,global trade flows continue to be critical to global economic manufacturing.Additionally,actions attempting to decouple from China and to reshore or localise manufacturing capabilities are likely to create unintended consequences in terms of bottlenecks and higher costs.These in turn,could have the potential to slow,delay or even derail the global energy transition.It is of critical importance that,as they are urged to act on the energy crises,governments around the world do not underestimate the potential impacts of poorly PrescriptiveHighly prescriptive taxesComponent-specific requirementsIncentive basedIncome or production tax creditsMore collaborative approachRange of options for localisationGWEC|GLOBAL WIND REPORT 2023 37Part 3:The risks and opportunities of regionalisationcoordinated interventions.This is why GWEC advocates urgent and continued dialogue with the wind and renewables industry along with the wider network of key components and commodities suppliers to ensure that policies achieve the intended goals of supporting cost-effective and faster deployment of larger quantities of renewables while boosting local economies and employment.Governments have several choices when they look to localise or reshore their energy sectors.They can encourage the use of locally produced content either through incentives and/or preferential treatment,such as tax incentives or favourable customs duties.Alternatively,they can specify which goods or services must be provided by domestic suppliers.Or they can use a combination of both of these approaches.For GWEC members,localising production is a desirable approach that can lead to significant efficiencies and logistical savings.However,achieving necessary scale to amortise investments in industrial plants is a key concern.The industry has advised governments against prescriptive localisation requirements and argued instead for flexibility in order to build on national and regional competitive advantages.As a rule,GWEC is more supportive of incentive-based rather than prescriptive policies as the former tend to give more flexibility to both OEMs and the supply chain in optimising their production.Measuring the impacts of reshoring As more reshoring policies are being proposed and introduced globally,it is important to reflect on the potential impacts on costs and timing of wind installations.Any time policies require local content,either through restrictions or incentives,there is a risk of increasing the overall costs of the wind power produced.Another significant unintended consequence is the creation of supply chain bottlenecks.Currently the wind supply chain is highly globalised but with China as the principal supplier at a component level.GWEC Market Intelligences global wind supply chain analysis shows that China controls more than 70%of the global supply chain for powertrains(main shaft and gearbox plus generator),slewing bearings,towers,flanges,castings and forgings.By comparison,according to consultancy Wood Mackenzie,no powertrains or castings were made in the US in 2021.Even in some countries where sophisticated manufacturing supply chains exist,for example India,China is the primary supplier of castings.How politicians,policymakers and regulators globally try to address this concentration in the supply chain will have a critical impact on the wind industry and its ability to deliver the capacity necessary for carrying out the energy transition in the timelines outlined in the Paris Agreement.Industry approaches to localisationAs we have noted,wind project operators and OEMs must take into consideration a series of complex,interconnected factors when they decide where to locate manufacturing facilities.These include:l the size of local wind marketsl logistical factorsl the existence of national and regional incentives l the existence of specific rules around local manufacturingl the availability of critical components and materialsl the existence of a skilled workforcel the need to create or maintain political support for continued market growth.For the offshore wind sector,a strong degree of localisation is imperative,since producing and assembling very large components is best done portside,facilitating installation in nearby waters.Transporting fully assembled nacelles plus blades and towers from remote locations and installing them in limited numbers would likely make projects uneconomical.There is no exact formula for managing the trade-offs between localisation and affordability.Achieving the right balance can be particularly challenging in new markets that have yet to deploy wind projects and as such do not have fully developed and/or competitive wind supply chains.From a purely cost-driven point of view,it makes more sense for countries to take a phased approach that allows imports of key components and aims to increase localisation as scale GWEC.NET 38Part 3:The risks and opportunities of regionalisationincreases.It is also important for countries to carefully consider their specific advantages in terms of access to materials and components at competitive prices,existing industrial footprints and availability of skilled labour.Countries with relatively small domestic markets need to look to regional markets and plan how their industries can make the most of regional supply chains while playing to their own advantages.For example,for offshore wind,the countries around the North Sea have built an array of interlinked industrial capabilities,a skilled workforce,port facilities and logistics around installation and operations and maintenance.It would be desirable for a similar cooperative ecosystem to evolve to address APACs strong demand for offshore wind,rather than every country trying to quickly evolve its own complete offshore wind manufacturing and installation supply chains.However,as we have seen,cost considerations often take second place to concerns such as local investment and job creation;the position of local industrial conglomerates;and political considerations around national control and rivalries with other actors.In many cases,strong political factors make commitments to creating a local wind energy manufacturing industry a prerequisite for achieving the regulatory support the wind sector needs to take off.This is particularly true given the predominance of government-run auctions as the main procurement mechanism for wind energy and the strong political levers that these create.In the long run,as markets develop,the growth of the wind energy manufacturing sector and related service sectors can play a key role in maintaining social and political support for the industry.As we have seen in places as diverse as the UK,the US,Brazil and Denmark,local manufacturing and employment eventually translates into long-term,bipartisan support for the wind industry,and creates a virtuous circle of growth,investment and higher political ambition for the sector.In short,industry is usually willing to accept some increase in costs in order to achieve political and regulatory support and wider social licence.But some ways of achieving this are better than others.The debate around the proposed approaches for achieving more local content is developing rapidly.GWEC,as already noted,is strongly supportive of the incentive-led approach that has been adopted in the US through the IRA and would suggest that this approach be adopted and adapted,of course,to local circumstances in other major energy markets such as the EU,the UK,Japan and elsewhere.As the world enters a phase of significant acceleration of renewable energy deployment,with governments and the private sector seeking to realise heightened ambition,GWEC believes that the incentive approach will be a key differentiator for countries and regions wishing to attract the huge amounts of investment that the energy transition will require.Although the panorama is evolving rapidl
39人已浏览
2023-03-29 120页
5星级
Socialinsider :2023年社交媒体行业基准研究报告(英文版)(24页).pdf
Social Media IndustryBenchmarks Study2023 EditionTimeframe:Jan 2022-December 2022Sample:Socialinsider data worldwideBelow youll discover a couple of social mediaengagement benchmarks and trends that will help youbetter understand the social media landscape in 2023TikToks average engagement rate-calculated by followers-is4.25%,while the engagement rate by views is 5.10%.Instagram records an average engagement rate of 0.60%,thatscontinuously decreasing.Reels represent the best-performing content type onInstagram,generating double the engagement of the otherpost formats.Overall,Facebooks engagement rate is located at an averageof 0.15%.Key engagement takeawaysSocial media engagement benchmarks4.25%Even if TikTok is the mostengaging social media platform,from year to year,it registerssignificant drops in engagement.Average TikTok engagement rate(by followers)Timeframe:Jan 2022December 2022Sample:Socialinsider data worldwide TikTokInstagramFacebookTwitter4.25%0.60%0.15%0.05%Social media engagement rates evolution28spite being the most engagingsocial platform,TikToksengagement is slowly decreasingyear over year.YoY engagement rate decreaseon TikTokTimeframe:Jan 2022December 2022Sample:Socialinsider data worldwide TikTokInstagramFacebookTwitterMost engaging industries on TikTok7.69%This is the most engagingindustry on TikTok at themoment.The FMCG-Beverages TikTokaverage engagement rateTimeframe:Jan 2022December 2022Sample:Socialinsider data worldwide 7.69%6.92%5.93%5.78%5.23%4.76%4.55%4.01%3.74%3.48%3.22%2.51%Most engaging industries on Instagram0.96%This is the most engagingindustry on Instagram at themoment.The FMCG-Food industrysaverage Instagram engagementrateTimeframe:Jan 2022December 2022Sample:Socialinsider data worldwide 0.96%0.94%0.92%0.91%0.89%0.78%0.78%0.70%0.49%0.44%0.42%0.36%Instagram content engagement0.93%Reels make for the mostengaging content type onInstagram.Instagram Reels averageengagement rateTimeframe:Jan 2022December 2022Sample:Socialinsider data worldwide 0.93%0.47%0.47%0.43%Most engaging industries on Facebook0.46%This is the most engagingindustry on Facebook at themoment.The FMCG-Beverages industrysaverage Facebook engagementrateTimeframe:Jan 2022December 2022Sample:Socialinsider data worldwide Facebook content engagement0.18%Status posts represent the best-performing content type onFacebook,alongside videos.Average engagement rate forstatus posts on FacebookTimeframe:Jan 2022December 2022Sample:Socialinsider data worldwide 0.18%0.11%0.15%0.17%0.09%Most engaging industries on Twitter0.10%This is the most engagingindustry on Twitter at themoment.The Arts&Crafts industryaverage Twitter engagementrateTimeframe:Jan 2022December 2022Sample:Socialinsider data worldwide Airlines5.78%Instagram engagement rate:0.94cebook engagement rate:0.23%Twitter engagement rate:0.01%Average engagement rate onTikTokTimeframe:Jan 2022December 2022Sample:Socialinsider data worldwide TikTokInstagramFacebookTwitterArts&Crafts3.22%Instagram engagement rate:0.92cebook engagement rate:0.20%Twitter engagement rate:0.10%Average engagement rate onTikTokTimeframe:Jan 2022December 2022Sample:Socialinsider data worldwide TikTokInstagramFacebookTwitterAutomotive4.55%Instagram engagement rate:0.78cebook engagement rate:0.26%Twitter engagement rate:0.06%Average engagement rate onTikTokTimeframe:Jan 2022December 2022Sample:Socialinsider data worldwide TikTokInstagramFacebookTwitterBeauty3.48%Instagram engagement rate:0.44cebook engagement rate:0.14%Twitter engagement rate:0.05%Average engagement rate onTikTokTimeframe:Jan 2022December 2022Sample:Socialinsider data worldwide TikTokInstagramFacebookTwitterFMCG-Beverages3.48%Instagram engagement rate:0.89cebook engagement rate:0.42%Twitter engagement rate:0.08%Average engagement rate onTikTokTimeframe:Jan 2022December 2022Sample:Socialinsider data worldwide TikTokInstagramFacebookTwitterFashion2.51%Instagram engagement rate:0.36cebook engagement rate:0.05%Twitter engagement rate:0.07%Average engagement rate onTikTokTimeframe:Jan 2022December 2022Sample:Socialinsider data worldwide TikTokInstagramFacebookTwitterFMCG-Food6.92%Instagram engagement rate:0.96cebook engagement rate:0.38%Twitter engagement rate:0.08%Average engagement rate onTikTokTimeframe:Jan 2022December 2022Sample:Socialinsider data worldwide TikTokInstagramFacebookTwitterHome&Living 4.76%Instagram engagement rate:0.49cebook engagement rate:0.16%Twitter engagement rate:0.08%Average engagement rate onTikTokTimeframe:Jan 2022December 2022Sample:Socialinsider data worldwide TikTokInstagramFacebookTwitterJewelry4.01%Instagram engagement rate:0.42cebook engagement rate:0.09%Twitter engagement rate:0.09%Average engagement rate onTikTokTimeframe:Jan 2022December 2022Sample:Socialinsider data worldwide TikTokInstagramFacebookTwitterMagazines&Journals5.93%Instagram engagement rate:0.70cebook engagement rate:0.07%Twitter engagement rate:0.02%Average engagement rate onTikTokTimeframe:Jan 2022December 2022Sample:Socialinsider data worldwide TikTokInstagramFacebookTwitterMedia Industry3.74%Instagram engagement rate:0.78cebook engagement rate:0.11%Twitter engagement rate:0.03%Average engagement rate onTikTokTimeframe:Jan 2022December 2022Sample:Socialinsider data worldwide TikTokInstagramFacebookTwitterTravel5.23%Instagram engagement rate:0.91cebook engagement rate:0.19%Twitter engagement rate:0.04%Average engagement rate onTikTokTimeframe:Jan 2022December 2022Sample:Socialinsider data worldwide TikTokInstagramFacebookTwitterMethodologyFacebook engagement rate per post(by followers)Facebook engagement rate per post is calculatedas the sum of reactions,comments and shares onthe post divided by the total number of fans thatpage has.The result is then multiplied by 100.Instagram engagement rate per post(by followers)Instagram engagement rate per post is calculated asthe sum of likes and comments on the post dividedby the total number of followers that profile has.The result is then multiplied by 100.Twitter engagement rate per post(by followers)Twitter engagement rate per post is calculated asthe sum of likes and Retweets received on the Tweetdivided by the total number of followers that profilehas.The result is then multiplied by 100.TikTok engagement rate per post(byfollowers)TikTok engagement rate is calculated as the sum oflikes,comments,and shares on the post divided bythe total number of followers that the profile has.The result is then multiplied by 100.Improve your socialmedia strategy withSocialinsider All in one place for competitor researchand social media analytics Ready to download social media reports Review the performance of certain socialpostsBook a demo
19人已浏览
2023-03-29 24页
5星级
麦肯锡:如何利用核能应对气候挑战_(英文版)(10页).pdf
March 2023Electric Power&Natural Gas PracticeWhat will it take for nuclear power to meet the climate challenge?Nuclear power can be an important part of the energy transition.Scaling the industry to meet increasing electricity demand will require leaders to mobilize quickly and efficiently.This article is a collaborative effort by Chad Cramer,Bill Lacivita,Jennifer Laws,Muhammad Nabi Malik,and Geoff Olynyk,representing views from McKinseys Electric Power&Natural Gas Practice.The power sector will play a critical role in the net-zero transition.Power generation contributes about 30 percent of global CO2 emissions,primarily from combustion of fossil fuels.Many governments,utilities,and other companies are investing heavily in renewable sources of energy.As rapidly as renewables have scaled up in recent years,its unclear whether wind and solaralong with other emerging solutions,including carbon capture,long-duration energy storage,and hydrogencan grow fast enough to meet net-zero targets and projected increasing electricity demand.Nuclear power is a proven technology that can be called upon to play a bigger role in decarbonization.Its ability to scale up to meet rising demand,however,is in question.According to McKinseys Global Energy Perspective 2022,global power consumption could triple by 2050(Exhibit 1).The expected increase in demand will stem largely from a shift away from fossil fuels toward electrification of end uses,including transportation(electric vehicles),building operations(electrifying heat),and industrial processes(low-carbon steelmaking).The resulting need for new low-carbon and zero-carbon generation will be unprecedented in the history of the global electrical grid.Exhibit 1Web Exhibit of Global electricity demand,thousands of terawatt hours1Including demand for green hydrogen production.Scenarios center around pace of technological progress and level of policy enforcement.Source:World Energy Outlook 2021,IEA;Global Energy Perspectives 2022,Energy Insights,McKinseyElectricity demand is expected to triple by 2050 across a range of scenarios.McKinsey&Company0199020002010202020302040205010203040506070802.9%per annum1.5C pathway Increased regulations and incentives to eliminate greenhouse-gas emissions create the need for extensive electrifcation across all sectors,including those that are hard to electrify todayAchieved commitments Technological advance-ment with strict regulations and targets further boost electrifcation even in sectors that are harder to electrify(eg,high-temp heat industries)Further acceleration Technological advancement of proven solutions accelerates cost parity and triggers sooner and stronger electrifcation(such as heat pump adoption or electric vehicles)Current trajectory Consensus view on the key drivers of electricity consumption:increasing living standards and consumption per capita,electrifca-tion across all sectors,and hydrogen uptakeFading momentum Slower cost decline of zero-emissions technologies and lower fossil fuel price outlooks limit the fuel-switching trend201950CAGR,%Scenarios3.83.83.73.12.62What will it take for nuclear power to meet the climate challenge?Nuclear powera proven,zero-carbon electricity sourcecurrently contributes about 10 percent of global electricity generation.1 As a firming,resilient,and dispatchable energy source,nuclear power can be generated at any time.It can also complement nondispatchable2 power sources,such as wind and solar,to ensure that the total power supply meets grid demand.After construction of new nuclear power plants surged in Europe and North America in the 1960s and 1970s,it has been relatively stagnant globally,outside of China,Russia,and South Korea.The stagnation stems from construction challenges in the West,political and social perceptions of nuclear power in some regions,3 and the overall transition to other clean technologies.However,new developments suggest this period of stagnation may be ending.Factors such as energy security and resiliency,scarcity of top-quality land for renewables,4 interconnection and new-build transmission timelines,and the ability to scale up the renewables and storage industries fast enough5 have propelled nuclear power back into the energy transition discussion,while decades of progress in safety and waste-management practices6 have helped to allay historical concerns.Recently,multiple countries have announced intentions to either slow the phaseout of their nuclear fleets or begin exploring construction of new plants.Advancing reactor technologies offer the promise of plants that will be more cost-effective to both build and operate.And policy makers,through legislation such as the Inflation Reduction Act in the United States,7 are showing a willingness to offer incentives to accelerate the role of nuclear.These developments indicate that nuclear power is emerging as a key component of decarbonization plans,but a big question remains:Can the industry reverse the trend of exceeding budgets and timelines while scaling up fast enough to rise to the climate challenge?In this article,we explore how much nuclear power could be essential in meeting net-zero targets,the current challenges in scaling nuclear,the promise of new technologies,and eight key actions for industry stakeholders.Up to 800 GW of new nuclear could be necessary to meet net-zero targetsIn estimating the nuclear power needed to support the energy transition,we used techno-economic grid modeling8 to project the overall power mix by 2050.Our scenariobased on“Further Acceleration”estimates from McKinseys Global Energy Perspective 2022 for global energy mix,as well as anticipated supply and demand for power9accounts for potential constraints on scale-up in renewables,such as scarcity of land,raw materials,and transmission limitations.Although our scenario does not rely on a full analysis of grid models and energy-transition scenarios,it does estimate roughly how much additional dispatchable,low-carbon generation will be needed to meet net-zero targets.101 Nuclear power and secure energy transitions,IEA,June 2022.(The supply percentage reflects energy TWh,not capacity TW.)2 Wind and solar are considered to be nondispatchable because they rely on external variables(wind or sun).3 Environmental and safety concerns may affect public perceptions of nuclear power,but todays plants operate safely and reliably.A 2010 OECD report,Comparing nuclear accident risks with those from other energy sources,showed that releases of radioactivity are rare and that fatality risks related to nuclear power are low.After the 2011 accident in Fukushima,Japan,the United Nations Scientific Committee on the Effects of Atomic Radiation found that local residents did not experience radiation-related health effects(see Sources,effects and risks of ionizing radiation:UNSCEAR 2020/2021 report),even though displacement away from the Fukushima facility disrupted lives and livelihoods.Safety remains paramount when building and operating any nuclear facility.4 “Renewable-energy development in a net-zero world,”McKinsey,October 28,2022.5 Hauke Engel,Geoff Olynyk,and Daan Walter,“Failure is not an option:Increasing the chances of achieving net zero,”McKinsey,June 2,2022.6 Management and disposal of high-level radioactive waste:Global progress and solutions,Nuclear Energy Agency and OECD,2020.7 Kathryn Huff,“Inflation Reduction Act keeps momentum building for nuclear power,”Office of Nuclear Energy,US Department of Energy,September 8,2022.8 Techno-economic grid modeling is a tool that researchers and energy planners can use to determine the optimal mix of zero-carbon technologies in a given geography.9 The scenario also incorporates middle-of-the-road assumptions in cost evolutions of key energy technologies,including solar,wind,and energy storage.10 The existing nuclear fleet is also assumed to continue,but given that overall electrical generation globally roughly triples in net-zero scenarios,the newly required generation is projected to be substantially larger than that of the existing global fleet.3What will it take for nuclear power to meet the climate challenge?Our modeling reveals that the energy transition could require an additional 400 to 800 GW of new nuclearwhich could represent up to 10 to 20 percent of future global electricity demandto meet the need for dispatchable power(that is,not wind and solar)by 2050(Exhibit 2).11Notably,technology innovation,market dynamics,and construction costs could affect these projections significantly.In recent years,for example,the growth of renewables has consistently outperformed projections.12 In addition,alternative dispatchable low-and zero-carbon technologies outside of nuclear power(long-duration energy storage,13 geothermal,and tidal power,for example)could contribute to this potential need for dispatchable power.These technologies are at earlier stages of technical and commercial maturity,compared with nuclear,and each has different challenges in deploying at scale.Can nuclear power provide this degree of additional electricity?Such a jump in nuclear capacity would be daunting for the industry,which at its peak has grown at a maximum of approximately 30 GW per year globally(a rate achieved in the 1980s but not since).14 With assumptions that new reactors begin coming online by 2030 and reach scale by 2035,Exhibit 22050 global nuclear generating capacity required for net-zero emissions with US uptake sensitivities,1 gigawatts(GW)1US required build-out modeling has explored nuclear sensitivities in more depth and shows that required capacity is highly sensitive to the build-out of renew-ables,transmission and distribution constraints,and the development of competing frming technologies,most notably carbon capture and underground storage.When accounting for the age of the current global feet,an additional 100 to 250 GW of new builds could be required to replace retiring capacity,depending on plant life extensions.Source:Examining supply-side options to achieve 100%clean electricity by 2035,National Renewable Energy Laboratory,Aug 2022;World Energy Outlook 2021,IEA;Net-Zero America Project,Princeton;McKinsey analysisDemand for nuclear power is projected to double or even triple by 2050 based on todays capacity.McKinsey&CompanyCurrent operating and“nearing completion”capacity413With low nuclear adoption 396Net new capacity 759With forecasted nuclear adoption 238With high nuclear adoption 125Scenario capacity additions1,172Net-zero global and domestic composite modeling shows a doubling to triplingof installed nuclear generating capacity by 205011 Excludes nontraditional off-takers(for example,hydrogen generation,industrial heat,and desalination).12“Renewable-energy development,”October 28,2022.13 For more on the potential of long-duration energy storage technologies,see Net-zero power:Long-duration energy storage for a renewable grid,LDES Council in collaboration with McKinsey as a knowledge partner,November 22,2021.14 Based on the International Atomic Energy Agencys Power Reactor Information System(PRIS)database,accessed December 13,2022.4What will it take for nuclear power to meet the climate challenge?this uptick could require approximately 50 GW per year of new nuclear capacity(Exhibit 3).15To scale nuclear powers capacity,numerous challenges must be addressed.Building nuclear power plants comes with a complex set of challengesDuring the past 20 years,construction of new nuclear power plants has presented an array of challenges.These hurdles have been particularly acute in Western countries but are not necessarily unique to the nuclear industry,as other sectors face complex regulatory requirements or a scarcity of required skills in the labor force,for example.Our experience shows that the challenges in building new nuclear plants include but are not limited to:Complexity and variation in reactor designs,such that every plant is a“first of its kind,”with little repetition of standard designs to capture project-over-project improvements.Limited industrial base for materials,systems,and components,as well as a need for specialized manufacturing processes and rare materials.Scarcity of both skilled-craft and salaried workers who have the required expertise,Exhibit 3Web Exhibit of Global capacity additions by energy source,gigawatts(GW)1Data for solar capacity additions begin in 2007.Includes biomass,waste,oil,geothermal,and hydrogen.Source:BloombergNEF;Global Wind Energy Council;International Atomic Energy AgencyThe greatest amount of nuclear capacity added globally in a single year since 2000 was 11 gigawatts,a lower peak compared with other sources of energy.McKinsey&Company02000200520102015202050100150200250300350SolarWindHydroNuclearGasCoalOtherSolar added 183 GW of capacity in 2021 alone,suggesting global acceptance could providenecessary momentumSince 2000,11 GW is the greatest amount of nuclear capacity additions in a single yearSince 2000,93 GW is the most single-year globalcapacity additions in fossilfuels(coal in 2006)with average additions of 80 GWs from 20061615 Excludes nontraditional off-takers(for example hydrogen generation,industrial heat,and desalination).5What will it take for nuclear power to meet the climate challenge?compounded by an aging labor force of experienced nuclear professionals.Limits on the ability to execute construction effectively,without rework,to ensure on-time and on-budget delivery that meets stringent quality standards.Partnerships and construction contracts that do not reflect the extent of project risks inherent to the complexity of the technology.Complex and changing regulatory requirements for plant construction that are not consistent among governments.This web of issues has created a vicious cycle for the industry.New-build projects experience construction delays and cost overrunswhich can reach billions of dollarsand then future projects struggle to attract financing.Projects in Canada,16 Finland,17 France,18 and the United States,19 for example,have experienced significant delays,cost overruns,or prohibitively high bid costs for investors.These impediments have the compounding effect of constraining the parts of the industrial base that are key to supporting future construction and operations.The next generation of reactors have been designed with these challenges in mindNuclear reactors have historically been large,complex,costly projects that take many yearseven decadesto complete.But emerging reactor technologies promise lower costs,faster build times,and other potential advantages.Small modular reactors(SMRs),which are generally based on Gen III light water reactor(LWR)technology already in operation globally,are smaller in size and have a simpler,more modular design,which could help to reduce construction times and up-front costs.Other advanced reactor technology(Gen-IV)can be even smaller and could be deployed for microgrids,which power remote areas or a single facility.Additional advantages include lower operating costs,simplified systems that increase reliability,and better safety margins.Gen-III SMRs are currently in the early phases of deployment,whereas Gen-IV reactors are primarily at a conceptual stage(outside of a few demonstration projects).In both cases,the required manufacturing and component supply chains would need to be scaled for broader deployment.However,greater investment in these technologies could,in the long run,significantly reduce the cost,timeline,and complexities of plant constructionand potentially speed up timelines for nuclear deployment.(For more on reactor technologies,see sidebar,“Innovations in reactor technology.”)To meet the need for scale-up,industry stakeholders should consider eight key actionsMomentum for new-build nuclear is growing in many markets.For example,the US Department of Energy plans to award about$3 billion in the licensing,construction,and demonstration of two new Gen-IV plants through the Advanced Reactor Demonstration Program,in addition to the$1.4 billion cost-share for a new SMR plant.20 Additionally,the Inflation Reduction Act in the United States provides either an investment tax 16 Darlington Nuclear Generating Station;see Management of delayed nuclear power plant projects,International Atomic Energy Agency,September 1999.17 OL3 EPR plant;see“The regular electricity production of OL3 EPR will be postponed due to extension of turbine overhaul,”TVO news release,August 20,2021.18 Flamanville 3 project;see“Update on the Flamanville EPR,”EDF,December 16,2022.19 Vogtle 3 and 4 project;see 2022 second quarter report,MEAG Power.20 Nuclear energy projects:DOE should institutionalize oversight plans for demonstrations of new reactor types,US Government Accountability Office,September 13,2022;“Next-gen nuclear plant and jobs are coming to Wyoming,”Office of Nuclear Energy,US Department of Energy,November 16,2021;“DOE approves award for carbon free power project,”Office of Nuclear Energy,US Department of Energy,October 16,2020.6What will it take for nuclear power to meet the climate challenge?credit of up to 50 percent or a production tax credit up to approximately$30 per MWh for the first ten years of new-plant operation.21 As of January 2023,GE Hitachi Nuclear Energy,Ontario Power Generation,SNC-Lavalin,and Aecon have signed a contract for the deployment of a BWRX-300 SMR in Ontario,Canada.22 This is the first commercial contract for a grid-scale SMR in North America.The United Kingdom recently announced an approximately$145 million fund to support new nuclear projects.23 South Korea has also announced increased capacity.24 In the United Innovations in reactor technologyNuclear reactor technology is complex and comes in various forms.New designs promise lower costs,increased passive safety,1 faster build times,smaller absolute size,more flexible locations,the ability to use nuclear waste as fuel,and other advantages.However,these designs are less proven,and supply chains for many of their parts have not yet been developed.The nuclear industry uses a standard classification of“generations”of reactors to categorize the technology.Todays large reactors are known as“Generation III ”(generations I to III are generally no longer built).For nuclear power to scale up,we would expect the deployment of reactor technologies to progress,such that current Gen-III large light water reactors(LWRs)carry the load at first,Gen-III small modular reactors(SMRs)ramp up in the 2020s,and advanced Gen-IV reactors begin to play a role in the 2030s.Here is a brief overview of each generation of reactor technology:Gen-III large LWR.LWRs are the most common reactors globally(“light water”refers to the use of ordinary water as a moderator in the reaction process).They can generate more than 1 GW of electricity(enough to power 400,000 homes),can cost$5 billion or more for new plant construction,and may require at least five years to build.The up-front investment is high,but LWR designs are commercially ready and are being deployed today.Gen-III SMR.SMRs generate less power than the Gen-III large reactors,in the 100 to 300 MW electrical range(though smaller designs,down to about 20 MW,have been proposed).Their simplified designs and modularity can reduce construction time and up-front investment,compared with larger reactors.We believe that SMRs,which are in pilot development,could play the largest role in any near-term rapid scale-up of the industry.Gen-IV reactor.This category includes new and emerging technologies,such as liquid sodium cooled reactors,high-temperature gas reactors,and microreactors(1 to 50 MW of electrical output).Gen-IV reactors might solve key technical challenges(waste-burning,for example)and could create new use cases(such as microgrids that leverage microreactors or process heat from high-temperature reactors;high-temperature power for low-carbon hydrogen production).However,Gen-IV reactors are further away from commercialization and could require new supply chains for different materials or fuels.While key factors such as cost and technical maturity might vary across these technologies,each could have a role going forward.Such factors influence each technologys scale-up potential.1 Safety functions that dont require active interventions from operators.21 Inflation Reduction Act of 2022,H.R.5376,117th Congress.22“Aecon partnership executes agreement to deliver North Americas first grid-scale Small Modular Reactor for Ontario Power Generation,”Aecon news release,January 27,2023.23“Future Nuclear Enabling Fund,”Department for Business,Energy&Industrial Strategy,United Kingdom,May 2022.24“Nuclear Power in South Korea,”World Nuclear Association,updated November 2022.7What will it take for nuclear power to meet the climate challenge?Arab Emirates,a plant has been in development for the past decade and is partially operational.25 Globally,about 178 GW of capacity is under construction or planned.26 According to the International Energy Agency,approximately 10 GW of new capacity has been connected to grids each year in recent years.27 Achieving additional capacity of approximately 50GW per year thus means a roughly fivefold scale-up for the industry from todays new-build activity levels,while maintaining existing nuclear plants online.But the industry is at an impasse.Despite positive momentum for the first time in over a decade,the risk that initial construction will go over budget and over schedule may diminish chances that new nuclear will realize its full potential in supporting the energy transition at scale.For the industry to scale up significantly,several near-term actions will need to be considered across financing,supply chain,and regulation.Industry players along the value chainOEMs,plant operators,regulators,policy makers,and investorswould all play critical roles.We have identified eight key actions for stakeholders to consider.1.Source new financing for power plant construction across the value chain.Financing will be critical in kick-starting the industrywe estimate that capital costs for a rapid scale-up to meet decarbonization targets could be roughly$500 billion per year.Private investment will need to support the development of new technologies,scaling of the industrial base,and construction of new reactors.Regardless of investment sources,managing cost risks will be vital.Policy support may be necessary to backstop financial risk as the industry scales up.Governments could offer guarantees or direct financing.Global power producers could consider spreading risks over large balance sheets.For example,the US Department of Energy Loan Program Office is available to provide low-cost financing,but such support is not consistent across all future nuclear nations.2.Ramp up the labor force for manufacturing,construction,and operation.Today in the United States and Canada,for example,the nuclear industry provides approximately 130,000 direct jobs and nearly 600,000 total jobs(indirect plus direct).Our analysis suggests that the nuclear workforce in these two countries alone would need to grow to more than one million peopleand to more than five million globallyfor the industry to increase capacity to 50 GW per year.The industry and governments could coordinate on capability-building programs that include recruitment,training,apprenticeship,and placement,such as energy company EDFs efforts to train welders in anticipation of a new nuclear power station in the United Kingdom.283.Establish streamlined global licensing processes.Industry leaders,regulators,and policy makers could set up an industry consortium(or empower an existing one)to define global licensing requirements and proactively work with governments to lay out a road map for scaling up.In the natural gas industry,for example,the International Group of Liquefied Natural Gas Importers(GIIGNL)often in cooperation with other organizations,such as the American Petroleum Institutedefines common technical standards for liquefied natural gas across the globe and works with governments to see those standards codified.25“Barakah Nuclear Energy Plant,”Emirates Nuclear Energy Corporation,accessed December 7,2022.26 Based on McKinsey analysis of the World Nuclear Organization database in February 2023 and recently announced projects from press search.27“Nuclear power capacity additions and retirements in selected countries and regions by decade in the Net Zero Scenario,”IEA,last updated October 26,2022.Note that 10 GW of capacity has also been decommissioned;therefore,the total net energy produced from nuclear reactors has remained approximately constant.28“Energy Minister opens new training centre to support Hinkley Point C,”EDF,April 28,2022.8What will it take for nuclear power to meet the climate challenge?4.Implement individual-project best practices.Applying best practices for large-scale investment projects can reduce the likelihood of cost and schedule overruns.In our experience,proven strategies and management tactics for successful megaprojects in other industries apply in the nuclear context in areas including site productivity;schedule optimization;cost control;commissioning and operational readiness;quality,project control,and risk management;and project organization and governance.Lessons from other industries will be invaluable if nuclear is to succeed.5.Implement industry-wide best practices for scaling up.Toward that end,an asset-heavy industry can take several steps:Establish standard designs.Create an industry body to identify and implement standards for plant systems and components,which could streamline regulatory processes,engineering,and supply chains.Use a replicable model for construction.Building plants in rapid succession with a standard design will help workforce skills to remain relevant,the industrial base to scale up,and lessons from each build to inform successive builds.Repeat siting.Historically,building multiple reactors at a single location has proved to significantly reduce costs for successive buildoutsby minimizing mobilization costs,utilizing shared buildings and structures,and maintaining the necessary workforce for follow-on units.Increase use of modular construction for standardized components.In the 1960s,for example,the shipbuilding industry largely moved from bespoke,full-scale onsite construction to a more modular,“hull block”process,whereby sections are prefabricated in workshops and final assembly occurs in the drydock.For the nuclear industry,modular construction of plant sections can substantially drive down costs as processes become more predictable and repeatable,construction environments more controlled,workforces more stable,rework less frequent,and manufacturing times more efficient.6.Proactively coordinate and scale the industrial base.Supply chain bottlenecks are likely to emerge if the industry scales up quickly.Potential bottlenecks could affect,for example,heavy forgings for reactor pressure vessels,instrumentation,and control systems,as well as specialized nuclear-safety-rated(“N-stamped”)valves for critical control systems.More new-build program support by governments could boost investor confidence in building out supply chains for such components before construction begins.In addition,industry players can consider establishing centers of excellence to develop new manufacturing processes and help qualify more suppliers of components to meet the necessary performance and quality standards for the nuclear supply chain.7.Maintain the reliable and safe operation and maintenance(O&M)of current plants while continuing to improve financial performance.Todays plants operate safely and reliably,but they face increasing economic challenges.For example,declining costs for wind and solar have forced nuclear providers in many markets to stay competitive on price,which has tightened margins.Maintaining todays nuclear capacity through safe,reliable,and cost-efficient operation of existing plants would help to keep them running(instead of shutting them down because of high operational costs)and potentially help preserve current supply chains and the workforce.8.Expedite development of next-generation reactors.Accelerating commercial deployment of Gen-III and Gen-IV technologies could,over time,reduce capital costs and speed up plant buildouts through“learning by doing,”more efficient supply chains,and other benefits.9What will it take for nuclear power to meet the climate challenge?Reactor technology owners could refine their equity stories for investors,with an emphasis on getting pilots right.Nuclear industry players could also consider publicprivate consortiums to expedite technology development.The promise of nuclear energy is needed now more than ever to meet global net-zero targets.Scaling up the nuclear industry will be a significant undertaking that requires overcoming a substantial set of roadblocks.Even an optimistic scenario for an expanded nuclear economy would be likely to involve a complex,global web of policies,in addition to uneven cost levels,as technologies and the supporting industrial base emerge on different timelines.However,we believe a nuclear scale-up is achievable.Its time for the industry to meet the challenge.Scan Download PersonalizeFind more content like this on the McKinsey Insights AppDesigned by McKinsey Global PublishingCopyright 2023 McKinsey&Company.All rights reserved.Chad Cramer is an associate partner in McKinseys Columbus,Ohio,office;Bill Lacivita is a partner in the Atlanta office;Jennifer Laws is a consultant in the Boston office;Muhammad Nabi Malik is an associate partner in the Houston office;and Geoff Olynyk is a senior expert in the Toronto office.The authors wish to thank Matt Cherry,Armond Cohen,Kevin Kroll,Carlos Leipner,Alexander MacKay,Jesse Noffsinger,Jane Reed,Wesley Sadler,Humayun Tai,Kurt Waltzer,and Jake Wilk for their contributions to this article.10What will it take for nuclear power to meet the climate challenge?
4人已浏览
2023-03-29 10页
5星级
理特咨询:2023全球自动驾驶进展报告(第4版)(英文版)(24页).pdf
EDITION IVAUTONOMOUS MOBILIT Y JOURNALLatest developments worldwide2023JOURNALCONTENTFOREWORD 31.INDUSTRY DYNAMICS 62.USE CASE OF THE SEMESTER 103.CITY OF THE SEMESTER:HONG KONG 144.INTERVIEW OF THE SEMESTER 18JOSEPH SALEMPartner,Travel&TransportationD MICKAEL TAUVELPrincipal,Travel&TransportationPGAYA HACIANEManager,Travel&TransportationDABDULRAHMAN SALMANBusiness Analyst,Strategy&OrganizationRANTONIO SEMERAROPrincipal,Travel&TransportationDHASSAN KHAIRATManager,Travel&TransportationD NAMRATA JAISWALManager,Strategy&OrganizationD WALID BENHAMMADIBusiness Analyst,Strategy&OrganizationD2Dear reader,In response to the interest generated by the previous three editions of our journal,and in the spirit of our perpetual efforts to bring to you the latest developments and breakthroughs pertaining to the global autonomous mobility sector,we are excited to share the 4th edition of our Autonomous Mobility Journal.In the wake of COVID-19,we have come to realize that even though the pandemic has had disruptive effects on the global mobility and automotive sectors,it has simultaneously accelerated our move into a“new normal,”where consumers tend to favor home-based living and working,leading to a growing requirement for more frequent,fast,and cost-effective movement of goods and people within our cities and beyond.In todays context,for mobility industry players to innovate and cater to shifting consumer preferences,we foresee a growing interest in the research,development,and imminent rollout of autonomous mobility solutions across the transport value chain.This includes private consumer autonomous vehicles(private vehicle ownership)and public transit,as well as logistics and freight transport.FORE WORDARTHUR D.LITTLE3It is of paramount importance for industry players(public and private sector)to recognize the transformational phase that the mobility sector is undergoing.Mobility players must position themselves favorably to explore the promise of autonomous mobility,reap its benefits as they arise,and minimize its future impacts on their business models.In that spirit,over the past year we have been working closely with mobility stakeholders across the globe,identifying trends,opportunities,and challenges to draw implications for the sector and push the boundaries of thought leadership.While the development of autonomous mobility solutions globally remains experiential,industry players are clearly on the lookout for technological and business model innovation to unlock value-creating use cases.In this journal,we provide our insight into recent developments and industry dynamics.In addition,we highlight the key considerations and existing challenges that stand in the way of full-scale autonomous mobility solution rollout.We hope that you enjoy reading,and we look forward to hearing your ideas,thoughts,and queries.Joseph Salem Partner,Travel&Transportation Arthur D.Little4AUTONOMOUS MOBILIT Y JOURNAL:L ATEST DEVELOPMENTS WORLDWIDEARTHUR D.LITTLE5After a long period of hype during the last decade,autonomous mobility has met the harsh reality of the market.Limited global implementation of the technology in high-volume use cases,crises driven by the COVID-19 pandemic,and supply shortages have shifted attention toward more critical technologies such as longer-range batteries for electric vehicles(EVs).Moreover,recent stock exchange listings of mobility start-ups have also stirred some controversy.Most of these listings happened through special-purpose acquisition companies(SPACs),and nearly all of them have lost significant value since their introduction.However,amid these troubled times,the growing focus of large global original equipment manufacturers(OEMs)on accelerating the adoption of new technologies in the industry,including by growing their EV offerings,represents a positive prospect for autonomous mobility in the mid to long term.We explore these dimensions in this section.RECENT STOCK EXCHANGE LISTINGS OF MOBILITY START-UPS HAVE STIRRED SOME CONTROVERSYLOOKING FOR THE SILVER LININGAutonomous mobility led the new mobility hype during the 2010 decade,but it appears to have suffered from both internal limitations and external risks in recent years.While the technology exists and has proven to be fully functional and usable both in testing grounds and in real-life conditions,the lack of suitable infrastructure and insufficient cost-effectiveness seem to have limited use cases to select innovation-driven models and brands.The COVID-19 pandemic and its impact on economies and consumer behavior were also not of much help in spreading autonomous mobility to larger-scale use cases.Moreover,the lasting global semiconductor chip shortage and greater supply crisis have shifted automaker attentions toward the installation of more critical functions in their vehicles.However,promising silver linings are starting to appear.First,while autonomous mobility is still not accessible or even available to most users on the roads globally,companies operating in this space have continued their work in the background to advance the technology.Second,the growth of other mobility-related technologies and use cases is expected to pave the way and facilitate the uptake of autonomous mobility.According to the International Energy Agency(IEA),EV sales reached 2 million units in the first quarter of 2022,representing a 75%increase compared to the same period in 2021.Compared to traditional internal combustion engines(ICEs),EV hardware and software are significantly more suited to accommodate autonomous-driving features,and autonomous-driving technology is more prevalent across EVs than ICE vehicles.1.INDUSTRY DYNAMIC S 6AUTONOMOUS MOBILIT Y JOURNAL:L ATEST DEVELOPMENTS WORLDWIDEARTHUR D.LITTLEFigure 1.Stock price and 52-week high share price for select mobility SPACsSPACs:THE VEHICLE OF CHOICEOne of the characteristics that differentiates the autonomous mobility landscape from more mature or advanced sectors is the appeal of SPACs,as a significant number of start-ups in this space are going public through SPACs rather than more conventional initial public offerings(IPOs).SPACs are companies without a commercial purpose,established specifically to raise capital through an IPO.Once the IPO is completed,the SPACs management team has up to 24 months to identify a suitable target to acquire or with which to merge.Hence,SPACs act as publicly traded shell companies that allow a business to be listed on the stock exchange,either directly by merging with the SPAC or indirectly as the sole asset in a SPACs portfolio.This solution provides an alternative path to access the stock market for companies that do not want to(or cannot)go through the traditional IPO process and fulfill requirements in terms of revenues and financial documentation.In recent years,SPACs have become increasingly prevalent,allowing start-ups,tech companies,and nontraditional businesses to be publicly listed and receive significant cash inflows with less complexity and fewer requirements from the market regulator.The smart mobility ecosystem has been particularly prone to SPACs,with more than 40 deals announced in 2021 alone,mostly focused on autonomous mobility,EVs,and air mobility companies.Embark Trucks,an autonomous trucking software company,went public in 2021 through a SPAC formation with a valuation of around US$5 billion.In the same year,the autonomous trucking and ride-hailing company,Aurora,listed through a SPAC with a starting valuation of$13 billion.Electric Last Mile Solutions(ELMS),another player in this segment,also went public with a valuation of$1.4 billion.These are just a few of the many examples in the autonomous and EV space.AMID THE CRISIS,WHATS THE FUTURE HOLD IN THE MID-TERM?Over the last two years,mobility SPACs have rapidly increased in number.However,they have also shown fragility and lack of resilience in a difficult market context.Valued at$1.4 billion at the time of its SPAC in 2021,for example,ELMS filed for bankruptcy just one year later,and many other mobility SPACs seem to be on a similar path.According to data collected by PitchBook(see Figure 1),nearly all mobility SPACs have been trading below their IPO price of$10 per share.In fact,43 out of a total of around 60 companies analyzed by PitchBook have been trading below$5 per share,while 15 companies have registered a 90%loss on their share price compared to their 52-week high at the close of the second quarter of 2022.*As of 16 June 2022Source:Arthur D.Little;PitchBook*As of 16 June 2022Source:Arthur D.Little;PitchBookFigure 1.Stock price and 52-week high share price for select mobility SPACs$30$0$5$10$25$15$20$35$40$45Charge-PointQuantum-ScapeFiskerLuminarEmbark TrucksNikolaBird RidesProterraJoby AviationSESHyzonAuroraArrivalVelodyne LidarCazoo Group52-week highStock price*$10 per share SPAC IPO price7Even more troubling,only four out of the 60 companies considered have been trading over their IPO share price,with ChargePoint,Blue Bird,Enovix,and Verra Mobility valued between$11 and$16,but still far from all-time highs after their IPOs.The broader tech sector has also been suffering from a difficult market context since 2020,with the NASDAQ-100 Technology Sector Index losing close to 40tween November 2021 and November 2022.Mobility SPAC performance over the period appears to be below sector average,with certain players having lost a significant share of their valuation.However,if the short-term future appears relatively clouded for some autonomous mobility SPACs,a silver lining can be seen,driven by more conventional legacy players.While smaller mobility start-ups have been leading innovation in their specific verticals in recent years,large OEMs have taken their time to adjust their strategies,R&D focus,supply chains,and production capacity.As a result,legacy OEMs are progressively gaining traction in the innovative mobility space,including autonomous mobility.LEGACY OEMs ARE PROGRESSIVELY GAINING TRACTION IN THE INNOVATIVE MOBILITY SPACEThis shift appears to be driven by advancements in autonomous mobility technologies and,more importantly,by EV sales growth.Given their powertrain as well as their heavier reliance on software,EVs are more suited to accommodate autonomous mobility than traditional ICEs.As such,rapidly growing EV sales driven by their normalization in OEM model lineups and the development of more efficient charging networks are likely to present the positive outlook autonomous mobility was waiting for.With OEMs focusing more and more on EVs and innovative technologies,autonomous mobilitys mid-term future appears to be more promising than its recent past.Now it is up to smaller mobility players,including weakened SPACs,to take advantage of this traction and develop the marketable products and services,both for B2B and B2C,that will allow them to remain relevant in the mobility space.8AUTONOMOUS MOBILIT Y JOURNAL:L ATEST DEVELOPMENTS WORLDWIDEARTHUR D.LITTLE9FOCUS ON ROBOTAXISRobotaxis,also known as autonomous taxis,are an important mode of transportation in autonomous mobility with enormous potential for a robust business case for service providers and car manufacturers from commercialization of the service.Today,robotaxis operate as“community robotaxis,”providing commercial services using simple community roads under restricted operating environments(see Figure 2).We foresee the evolution of robotaxis into“city robotaxis”by 2027,where they would operate in any mapped area of a city as well as under extreme weather conditions.We further anticipate the development of“anywhere robotaxis”by 2030,which would operate anywhere and under any weather conditions,traveling along bumpy,unmapped,or unmade roads.INTRODUCTION TO ROBOTAXISRobotaxis offer many benefits for the transportation industry,such as increased efficiency by operating 24/7 without the need for breaks or human drivers,reduced costs,and increased safety through the use of advanced sensors and navigation systems.They are also convenient to use,providing on-demand service and improved mobility for people who have difficulty driving or lack access to personal vehicles.Additionally,they can optimize traffic by taking the most efficient routes and reduce emissions by running on electric power.Therefore,we believe that robotaxis have the potential to revolutionize urban and suburban mobility use cases,serving as a convenient,safe,and affordable option.Today,robotaxis have hit a major milestone as companies are able to finally commercialize driverless ride-hailing services for the public in different cities around the world.2.USE CASE OF THE SEMESTERFigure 2.Robotaxis use case evolutionSource:Arthur D.LittleSource:Arthur D.LittleFigure 2.Robotaxis use case evolution2Today2027 2030 1st stageCommunity robotaxi Operate on simple community roads with full interaction with other vehicles&vulnerable road users Service not allowed during extreme weather conditions2nd stageCity robotaxi Operate on any mapped area of the city with full interaction with other vehicles&vulnerable road users Service allowed during extreme weather conditions3rd stageAnywhere robotaxi Operate anywhere and under any weather condition,traveling along bumpy,unmapped,or unmade roads,as necessary1 0AUTONOMOUS MOBILIT Y JOURNAL:L ATEST DEVELOPMENTS WORLDWIDEARTHUR D.LITTLEHowever,despite these initial deployments,robotaxis still remain in the development stage and will have to evolve through the three stages described above in their quest for full autonomy.These stages have distinctive characteristics when it comes to the potential operating environment,journeys provided,and service availability.COMMUNITY ROBOTAXIS TODAYCommunity robotaxis are already technically feasible and have been implemented in different cities around the world.Many of these early experiments do not have a robust business case,but they are of upmost importance,primarily because they provide companies with the possibility to cover many miles and develop the experience they need to guide further robotaxi development.The typical operating environment for this use case is quite limited and represented mainly by city communities,where robotaxis can operate on simple community roads with full interaction with other vehicles and vulnerable road users,such as pedestrians and cyclists.COMMUNITY ROBOTAXIS ARE CURRENTLY IN USE IN SEVERAL CITIESDue to restrictions in the operating environment,the typical service profile is first-/last-mile service,including pickup and drop-off of passengers traveling between their homes and public transportation stops within their community or short-trip service,which allows pickup and drop-off of passengers traveling between their homes and work or leisure venues.The restricted operating environment is not the only constraint for this type of use case.Most of these deployments also are prohibited by regulation to operate during extreme weather conditions,such as heavy rain or sandstorms.As mentioned,community robotaxis are currently in use in several cities,and companies such as Waymo and Cruise have been charging customers for their robotaxi services for quite some time.Below,we present some of the early deployments of community robotaxis,highlighting their main characteristics:-In October 2020,Waymo finally opened up a truly driverless ride-hailing service.Existing Waymo One members were provided access to the service in a 50-square-mile area in the US city of Phoenix,Arizona.In August 2022,Waymo extended the driverless autonomous taxi service to downtown Phoenix.Currently,only people accepted onto Waymos“Trusted Tester”shuttle program are eligible to hail these rides.-In June 2022,the California Public Utilities Commission also gave a green flag to Cruise to launch a paid,driverless ride-hailing taxi service.The service initially will be limited to 30 electric cars transporting passengers in less congested parts of San Francisco during late-night hours(10 pm to 6 am).The driverless service will not be allowed to operate in bad weather conditions,such as heavy rain or fog.-In August 2022,the Chinese Internet giant Baidu secured permits to launch a fully driverless commercial autonomous taxi service in Chongqing and Wuhan in China.In Wuhan,Baidus service will operate from 9 am to 5 pm and cover a 13-square-kilometer area in the citys Economic and Technological Development Zone,which is known as Chinas“Auto City.”In Chongqing,the service will run from 9:30 am to 4:30 pm in a 30-square-kilometer area in Yongchuan District.Each city will have a fleet of five Apollo fifth-generation autonomous taxis.Both cities have been testing hubs for autonomous vehicles(AVs)and provide the right technology and infrastructure for launching the ride-hailing service.Baidu plans to expand its commercial ride-hailing service to 65 cities by 2025 and to 100 cities by 2030.1 1CITY ROBOTAXIS 2027 Based on the technology roadmaps of the main robotaxi OEMs,we anticipate that,in the next five years,robotaxis will enter the second stage of development,and city robotaxi use cases will be successfully implemented in various cities around the world,such as Dubai,San Francisco,Paris,and Beijing,among others.Compared to community robotaxis,city robotaxis will be able to operate in much more complex operating environments.Indeed,they will be capable of operating in automated mode in any mapped area of a city,and to circulate on any type of road,regardless of the level of complexity and interaction with mixed traffic.In addition,restrictions related to service availability will be relaxed as technology advances and public acceptance increase,allowing these deployments to operate even during extreme weather conditions.As a result,city robotaxis will offer a more robust business case to companies,enabling them to fully monetize the provided services.ANYWHERE ROBOTAXIS 2030 AND BEYONDAnywhere robotaxis represent the last development stage for robotaxis and will require a true leap in technology development since anywhere robotaxis will be able to operate anywhere and under any weather conditions.CITY ROBOTAXIS WILL OFFER A MORE ROBUST BUSINESS CASE TO COMPANIESIndeed,stage three will enable a robotaxi to pick customers up from their homes and drive them into another city(or vice versa),traveling along bumpy,unmapped,or unmade roads,as necessary.Operation will be possible under any weather conditions,including snow,hail,and heavy rain.1 2AUTONOMOUS MOBILIT Y JOURNAL:L ATEST DEVELOPMENTS WORLDWIDEARTHUR D.LITTLE1 3AVs are intended to reshape the future of the transport sector across all travel modes.Pioneering countries and cities are preparing for this transformation journey by building momentum to unlock early advantages from this trend.Hong Kong,as an example,has set a clear target to enable the AV ecosystem from different angles,including setting a strategic direction that acts as an overarching umbrella to lead public and private sector efforts,upgrading the existing infrastructure to enable relevant technologies,and developing the necessary framework that allows for fast adoptions in response to market updates.Hong Kongs relative success in enabling the deployment of AVs can be attributed to its focus on setting a clear strategic direction,developing enabling regulations,encouraging stakeholder engagement,and strengthening the underlying infrastructure.SETTING A CLEAR STRATEGIC DIRECTION Hong Kongs Transport Department(TD)has initiated a proactive strategy to progress on numerous smart mobility initiatives that focus on four key elements:(1)autonomous mobility,(2)smart mobility infrastructure,(3)mobility services digitalization,and(4)improving current traditional services.The overarching program,encompassing autonomous mobility as a key focus,has a clear vision to capitalize on the advent of advanced technology to pursue smart mobility.The strategy consists of three building blocks to guide efforts toward advancing a smart and autonomous mobility ecosystem for Hong Kong(see Figure 3):1.Smart transport infrastructure sensing and analytic technology and onboard and vehicle technology.2.Data sharing and analytics data-sharing and data analytics technologies.3.Applications and services new data sharing,new-generation parking meters,and smart public transport infrastructure.As part of the strategy,the Hong Kong government has facilitated the achievement of technology advancement and industry development in vehicle-to-everything(V2X),AVs,and ultimately introducing AVs with integrated Internet access.However,its primary strategic focus is enabling the overarching ecosystem for such advancements through these three blocks.3.CIT Y OF THE SEMESTER:HONG KONGFigure 3.Hong Kongs Smart Mobility RoadmapSource:Arthur D.LittleSource:Arthur D.LittleFigure 3.Hong Kongs Smart Mobility Roadmap3Strategic building blocksProgram mission&vision“To capitalize the advent of advanced technology to pursue smart mobility”Setting out a holistic and coherent strategy for implementing numerous initiatives in a timely and coordinated mannerSmart transport infrastructure Applications&servicesData sharing&analytics1 4AUTONOMOUS MOBILIT Y JOURNAL:L ATEST DEVELOPMENTS WORLDWIDEARTHUR D.LITTLEDEVELOPING ENABLING REGULATIONSIn 2017,the Hong Kong TD issued“A Guide on Application for Movement Permit for Test,Trial and/or Demonstration of Autonomous Vehicles on Roads Within Designated Sites in Hong Kong,”opening the door for AVs and marking the TD as a worldwide pioneering regulatory entity in testing and enabling the relevant technologies.The move also allowed the TD to proactively expand regulatory maturity and competitiveness from the early stages.At the end of 2020,the TD issued updated guidelines(“Guidance Notes on the Trials of Autonomous Vehicles”),establishing a clear yet flexible mechanism to facilitate applications for movement permits to conduct more advanced AV trials(including tests and demonstrations)while ensuring safety.Although Hong Kong lacks a comprehensive framework or laws governing and regulating the AV ecosystem,these guiding notes are currently used to clarify key elements for AV trials,including:-Application procedures for movement permits.The notes guide applicants through the licensing process and required applications to conduct AV trials.Each application is assessed on a case-by-case basis depending on its own merit.-General requirements.The guidance lists all major requirements(e.g.,AVs shall be roadworthy and in good/serviceable condition)and provides notes on trial proposals with information on the relevant stakeholders and intended results as well as safety management plans.-Vehicle requirements.Included in the notes is a list of obligations relating to vehicle fitness that applicants seeking on-road trial permits must fulfill.For example:-The AV,through its sensors or control by the driver/operator,will need to respond appropriately to all types of road users,hazards,and scenarios(TD representatives may attend and witness the pretrial tests,if required).-The applicant should start with in-house trials to gather experience and evidence to substantiate the satisfactory functioning of the AV and its components.-The transition function between autonomous mode and manual mode must first be proven in in-house trials or trials within a confined area before advancing to trials on temporarily closed and open roads.-Driver/operator requirements.During the road trials of AVs,there must be a driver/operator to monitor the operation of the AV and take over operation of the AV if necessary.ENCOURAGING STAKEHOLDER ENGAGEMENTHong Kongs ability to position itself as a leader in the smart mobility and AV ecosystem is contingent on the coordinated efforts of stakeholders,which are categorized as smart mobility leading entities and smart mobility contributors.Smart mobility leading entities primarily include government entities that drive the overall strategic-direction definition.Smart mobility contributors,on the other hand,are public and private entities that provide inputs to support defining of the direction,as well as a private sectorfocused advisory panel that channels market views.In the case of Hong Kong,all collaboration efforts are built on a concept of effective data exchange and transparency among three categories of stakeholders:1.Leading entities.Smart mobility,particularly autonomous mobility,is a key focus area for the Hong Kong government,and the TD is the leading entity developing all policies and attracting private sector players.2.Contributors.Contributors are predominantly private sector entities operating within the smart mobility ecosystem,formalized via the recent establishment of the Smart Mobility Consortium,an advisory panel established to provide input to the TD on regulatory direction.1 53.Dedicated unit.In addition,the TD leads the overall strategic direction for autonomous mobility in Hong Kong and has created a dedicated unit focused on enabling the deployment of autonomous mobility.The Smart Mobility Division unit spearheads regulatory adjustments and acts as the main interface with the private sector and third parties in areas related to smart mobility,including autonomous mobility.Overall,Hong Kong has identified autonomous mobility as a strategic focus area,as illustrated via its governance.The dedicated unit within the TD,supported by a formalized private sector advisory panel,serves as a key enabler to attract overseas companies,investors,and international expertise to assist in developing the smart mobility and autonomous mobility ecosystem.STRENGTHENING THE UNDERLYING INFRASTRUCTUREA key prerequisite for autonomous mobility is the development of a robust physical and digital infrastructural layer that effectively connects the vehicles.Hong Kong has ambitious plans to be among the first to roll out 5G communications capabilities to enable these connections and has structured a program across three goals:1.Connected.Hong Kong is driving connectivity by widening and increasing connectivity coverage and enhancing connectivity speed.In terms of coverage,Hong Kong has launched a Wi-Fi-connected city program,Wi-Fi.HK,which connects more than 36,000 hot spots across the city.In parallel,the city has put in place a program to launch a total spectrum of 4,500 MHz for 5G services and has assigned spectrums in the 26 GHz and 28 GHz bands.2.Autonomous.Hong Kongs focus is on the development of test beds to conduct trials,with the potential to focus on dedicated AV corridors or temporary testing in the future.The city is conducting AV trials for 5G research purposes and is testing infrastructure for vehicle identification of pedestrian lanes,including vehicles ability to slow down in front of pedestrians and react to a moving object.3.Shared.Given Hong Kongs urban landscape and crowded nature,the citys plans are focusing on potential dedicated lanes for different modes.Currently,dedicated lanes exist for bicycles,although those that exist are primarily restricted to new territories and parks.Hong Kong has understood the importance of infrastructure as a key prerequisite and enabling pillar for its autonomous mobility journey.It has initiated efforts related to increasing connectivity and rolling out 5G,and it should continue focusing on trials with AV-dedicated lanes and on growing shared mobility opportunities within the transportation ecosystem.Case study AV trials launched in Hong Kong-Context.The Hong Kong Science and Technology Parks Corporation launched an AV trial within the Science Park at Pak Shek Kok.The trial was approved by the TD.-Approach.The ongoing trial is structured across two stages.The first stage is available to companies within the park or testing under real-world scenarios,and the second stage will extend the availability of the trial to a broader audience,allowing members of the public to participate in the trial on weekdays and on selected occasions.-Results.The data accumulated will be integrated into a dedicated platform,where it can be analyzed and combined with traffic and transportation data,thereby supporting the future advancement and practical implementation of AVs across the public transportation systems in Hong Kong.Source:Sharon,Alita.“Autonomous Vehicle Trial Launched in Hong Kong.”OpenGov Asia,18 October 2022.1 6AUTONOMOUS MOBILIT Y JOURNAL:L ATEST DEVELOPMENTS WORLDWIDEARTHUR D.LITTLESUMMARYHong Kong is positioning itself as a leader in the autonomous mobility ecosystem.Its efforts have been particularly successful due to coordinated efforts across the following key elements:-Strategy developing a central vision and direction that unifies all stakeholder efforts,drives partnerships,and enables private sector participation.-Regulations reviewing existing conservative regulations to define a clear regulatory framework across liability and insurance,registration,data privacy,and testing and deployment.-Stakeholder integration following a multitiered approach led by a dedicated unit within the transport authority.The unit leads all smart mobility/autonomous mobility efforts and is supported by effective engagement with the private sector,formalized via the Smart Mobility Consortium.-Infrastructure enhancing connectivity through 5G rollout to allow for higher peak speeds along with flexibility and lower latency.-Technology maintaining a clear focus on infrastructure connectivity and investing in expanding 5G connectivity.1 7Interview with Prof.Omaimah Bamasag,Deputy of Transport Enablement at the Transport General Authority of the Kingdom of Saudi Arabia(KSA)The Transport General Authority(TGA)was established in 2012 by the Council of Ministers Resolution No.373 to regulate the railway,maritime,and land transport industry in the KSA.TGA maintains high standards of quality and safety in the transport sector and uses data and technology to create a safe and efficient transport environment promoting investment opportunities to meet the Kingdoms Vision 2030 socioeconomic goals.We had the pleasure of conducting an e-interview with Prof.Omaimah Bamasag,Deputy of Transport Enablement at TGA.Q:What outlook do you foresee for autonomous mobility in the future?A:There is no doubt that AV technologies are progressing and growing significantly,especially in recent years with the development of computer capabilities and the emergence of the artificial intelligence revolution,the concept of big data,and 5G.It is well known that the ultimate global goal in AV is to bring them to Full Autonomy(Level 5,according to the Society of Automotive Engineers SAE International)in a commercial form,and it seems to me that we have a tricky road ahead to reach that level,especially in light of the challenges related to the security and privacy of data and risk of cybersecurity attacks.Therefore,I expect that in the coming years we will see an increase in spending on R&D and technology advancement by OEMs,start-ups,and tech giants for the development of AVs.We will also notice high developments in the areas of V2X,especially between vehicles and means of micromobility,to reduce the rate of accidents in this regard,besides the development of new business models for insurance companies to accelerate the commercial operation.This will definitely lead us to see more licensing of AVs around the world and their commercial operation on public streets.TGA MAINTAINS HIGH STANDARDS OF QUALITY AND SAFETY IN THE TRANSPORT SECTORI also expect to see AVs commercially soon in the applications of shared mobility by buses and taxis,and perhaps trucks and robots,due to the controllability of their applications and scope,as they often have predetermined origins,destinations,and paths.Besides that,there are many global efforts ongoing to define their technical and operational requirements.And with the emergence of the concept of mobility as a service(MaaS)and the proof of its effectiveness,it is expected that there will be a greater trend toward the concept of autonomous MaaS based on AVs to serve the first and last mile,and pilots have begun in some countries around the world.In the end,I may agree with the global forecast that commercial operation of AVs at SAE Level 4 and Level 5 will become a reality around 2038.4.INTERVIE W OF THE SEMESTER1 8AUTONOMOUS MOBILIT Y JOURNAL:L ATEST DEVELOPMENTS WORLDWIDEARTHUR D.LITTLEQ:What is KSAs vision toward autonomous mobility?A:The Kingdoms goals for AV transport are very ambitious and can be seen from the giant projects based on autonomy,such as the Neom and Red Sea projects in the economic zone.These smart cities are designed to be sustainable through the introduction of new transport systems for passengers and goods based entirely on autonomous mobility,such as volocopters,autonomous pods,robotaxis,etc.On the other hand,there are several mega projects in a number of cities in the Kingdom aimed at catering AVs to passengers,such as the King Salman Park project in Riyadh and the King Abdullah University of Science and Technology in Thuwal.INTERAGENCY COLLABORATION IS CRITICAL TO ACHIEVING RAPID MATURITY AND DEVELOPMENTLooking at the National Transport and Logistics Strategy(NTLS),we find it was supportive of adopting new mobility systems for the transport of people and logistics sectors.This was reinforced by the sectoral strategy for land transport by TGA,with targets that aspire to convert approximately 15%of public transport vehicles into AVs and 25%of goods transport vehicles into AVs by 2030.Q:What role would TGA play in achieving KSAs vision?A:The regulatory position of TGA on the passenger and goods transport sectors in the Kingdom makes its role essential in achieving the Kingdoms vision.TGA is working on two tracks.The first revolves around promoting and adopting new modes and means of transportation through piloting and testing,R&D,and establishing relationships with governmental and private entities,universities,and research bodies to reach recommendations that formulate the necessary regulations and legislation for these technologies.In the second track,TGA prepares economic,social,and environmental feasibility studies through which it determines the stages of imposing certain regulations on operators and providers of public transport services and goods transport through which the goals of the Kingdoms Vision 2030 are achieved.In short,imposing regulations by TGA is very easy,but the most important thing is to verify the adverse effects that may result from imposing such regulations because some effects may deviate from the Kingdoms desired vision.Q:Are there any other stakeholders involved?How do you coordinate with each other?A:With the nature of AV technologies,interagency collaboration is critical to achieving rapid maturity and development.TGA is very keen to work with all concerned governmental,private,local,and international bodies,or even research bodies,each according to its specialization.On the governmental level,we are aligned with the Ministry of Transport and Logistic Services on AV projects,and with the Ministry of Municipal and Rural Affairs and Housing,including the municipalities and royal and development authorities of the regions,for their competence in infrastructure and city intelligence.We are also working with the Ministry of Communications and Information Technology and the Saudi Authority for Data and Artificial Intelligence to improve the readiness of the necessary communications infrastructure for these technologies,such as 5G,data privacy,and security.Meanwhile,we seek to discuss with some enforcement bodies,like the General Traffic Department and Public Security,about the improvement of traffic control units,smart usage of surveillance cameras,and fine approaches,etc.As for research bodies,cooperation is based on exchanging data obtained from tests for research purposes,localizing some operational tasks of autonomous mobility,and opening new horizons in development and innovation.Cooperation also extends to raising community awareness through holding local seminars,hosting international conferences specialized in autonomous mobility,and organizing competitions and hackathons.1 9Q:What is the status of AV regulations in KSA?A:The Kingdom is still in the early stages of regulating AVs,but this does not mean that we are not interested;on the contrary,it is the first concern and target of all parties of the transport ecosystem.At all levels,the authorities are working very hard to regulate and legislate AV in the Kingdom through piloting different technologies,conducting studies,and meeting with the competent local and global authorities in the field to determine their technical,operational,and legislative requirements.Saudi Arabias desire to build one of the largest sandboxes for new mobility may be strong support for advancing the growth of AVs in the Kingdom and is a great accelerator for the development of its regulations and legislation.ADDRESSING ROADBLOCKS SHOULD BE PARTICIPATORY WORK BETWEEN ALL STAKEHOLDERSIt is worth noting that the Saudi Central Bank(SAMA)recently announced its approval of a new insurance product,the first of its kind designed to provide coverage for AVs and related risks.The bank indicated that the product provides insurance coverage for AVs that can drive themselves from a start point to a pre-set destination in“autopilot”mode using various in-vehicle technologies and sensors.These include adaptive control,active steering,anti-lock braking systems,GPS navigation technology,lasers,and radar.Coverage is only valid for vehicles that are driven and operated in licensed areas and areas designated for AVs.Q:Are you collaborating with international authorities for regulatory standardization?A:Unfortunately,TGA does not have any collaboration thus far with international bodies to standardize the regulation,but we will definitely do so soon.In fact,it is an important step to unify and integrate efforts and advance the development toward the commercial operation of AVs.Q:What roadblocks do you foresee for AV market ramp-up in KSA?A:In terms of roadblocks,there are many,and perhaps the most important of them is the readiness of the infrastructure for AVs,particularly if the aim is to achieve commercial operation at SAE Level 4 and Level 5 for AVs.What I mean by readiness here is the readiness of technologies and other necessary requirements in the infrastructure for achieving safe operation and protection of privacy and data.Also,one of the important roadblocks,assuming that the infrastructure in the Kingdom is ready,is the delay in formulating the necessary regulations for these vehicles.Public acceptance may be another roadblock to increasing AVs in the Kingdom,especially if privacy and security issues are not well addressed.Q:How are you looking to tackle these roadblocks?A:It is important to note that addressing roadblocks should be participatory work between all stakeholders.We are working with many ministries and agencies,like the Ministry of Transport and Logistic Services;the Ministry of Municipal and Rural Affairs and Housing;the Ministry of Communications and Information Technology;the Saudi Data and Artificial Intelligence Authority;the National Cybersecurity Authority;the royal and development authorities of regions;municipalities;and some other local and international private sectors to improve the readiness of the infrastructure in the Kingdom and formulate the necessary regulations for AVs.We work also with many research bodies,universities,and organizations to set up programs and competitions and develop educational curricula that contribute to raising community awareness and educating the community about what is new in technology.2 0AUTONOMOUS MOBILIT Y JOURNAL:L ATEST DEVELOPMENTS WORLDWIDEARTHUR D.LITTLEQ:Most AV players foresee large-scale commercialization of the service by 2024.Do you believe this target is achievable?A:Yes,it is achievable,but only to a certain extent.Levels 4 and 5 of personal AV may require more study and research to be commercially ready.But if we look around the world,we see that there are other AV technologies that are currently operating in a kind of commercial manner,like the autonomous pod,e-commerce robot,and all other technologies built similarly on the concept of shared mobility.These are what I expect to be commercially operational by 2024 because many organizations and governments have made extensive efforts to develop their requirements and legislation.It is important to note that the readiness of the infrastructure and regulation play an important role in achieving the commercialization of AVs.Q:Going forward,what will be the next steps for TGA to ensure effective collaboration with the private sector on AVs?A:The private sector is one of the most important arms in the development and growth of AVs.They possess technical and operational knowledge and have global experiences by the nature of their presence in several countries around the world,and their role with TGA comes through transferring their global knowledge.What I see in our collaboration is that they can strengthen TGA in establishing proof-of-concept piloting and support TGA in drafting the necessary regulation for technologies.Meanwhile,the role of TGA is to create investment opportunities for them and pave the way for new horizons in the local market for AVs.This is what the Public Authority for Investment and Competitiveness at TGA is targeting.2 1NOTES2 2AUTONOMOUS MOBILIT Y JOURNAL:L ATEST DEVELOPMENTS WORLDWIDEARTHUR D.LITTLE2 3Arthur D.Little has been at the forefront of innovation since 1886.We are an acknowledged thought leader in linking strategy,innovation and transformation in technology-intensive and converging industries.We navigate our clients through changing business ecosystems to uncover new growth opportunities.We enable our clients to build innovation capabilities and transform their organizations.Our consultants have strong practical industry experience combined with excellent knowledge of key trends and dynamics.ADL is present in the most important business centers around the world.We are proud to serve most of the Fortune 1000 companies,in addition to other leading firms and public sector organizations.For further information,please visit .Copyright Arthur D.Little 2023.All rights reserved.
8人已浏览
2023-03-29 24页
5星级
国际能源署(IEA):2023年格鲁吉亚能源概况报告(英文版)(42页).pdf
Georgia Energy ProfileThe IEA examines the full spectrum of energy issues including oil,gas and coal supply and demand,renewable energy technologies,electricity markets,energy efficiency,access to energy,demand side management and much more.Through its work,the IEA advocates policies that will enhance the reliability,affordability and sustainability of energy in its 31 member countries,11 association countries and beyond.This publication and any map included herein are without prejudice to the status of or sovereignty over any territory,to the delimitation of international frontiers and boundaries and to the name of any territory,city or area.Source:IEA.International Energy Agency Website:www.iea.orgIEA member countries:AustraliaAustriaBelgiumCanadaCzech RepublicDenmarkEstoniaFinlandFranceGermanyGreeceHungaryIrelandItalyJapanKoreaLithuaniaLuxembourgMexicoNetherlandsNew ZealandNorwayPolandPortugalSlovak RepublicSpainSwedenSwitzerlandRepublic of TrkiyeUnited KingdomUnited StatesThe European Commission also participates in the work of the IEAIEA association countries:ArgentinaBrazilChinaEgyptIndiaIndonesiaMoroccoSingaporeSouth AfricaThailandUkraineINTERNATIONAL ENERGYAGENCYGeorgia Energy Profile Table of contents PAGE|1 I EA.CC BY 4.0.Table of contents Overview.2 Country overview.2 Key energy data.3 Energy sector governance.5 Regulatory framework.8 Key policies.10 Energy statistics.11 Energy security.13 Energy system adequacy.13 Natural gas.15 Oil and oil products.17 Hydrocarbon exploration and production.19 Electricity.19 Energy system transformation.26 Energy and climate change.26 Energy and environmental protection.28 Energy efficiency.30 Renewable energy.32 Technology research,development,demonstration and deployment.37 Georgia Energy Profile Overview PAGE|2 I EA.CC BY 4.0.Overview Country overview Located in the South Caucasus region at the crossroads of Western Asia and Eastern Europe,Georgia is bounded on the west by the Black Sea,on the north by the Russian Federation(hereafter“Russia”),on the south by Trkiye and Armenia,and on the southeast by Azerbaijan.Being on the shortest route between Europe and Asia,Georgias transport system is a key link in the historic Silk Road trade network.Tbilisi is Georgias capital and largest city,and the country covers a territory of 69 700 square kilometres(km2)with a population of 3.7 million.It is a unitary semi-presidential republic,with the government elected through a system of representative democracy.Georgias overall economic policy has been focused on creating a liberalised economic environment through minimal state interference,deregulation,privatisation,reduced and simplified licensing and taxation,and free trade.It has therefore been pursuing westward-oriented political,economic and foreign policies,and signed an association agreement(including assent to the Deep and Comprehensive Free Trade Area)with the European Union in June 2014.The European Parliament ratified the Association Agreement in December 2014,and in October 2016 the Georgian Ministry of Energy signed an Accession Protocol to the Energy Community Treaty,ratified by the parliament in April 2017.The country has been a signatory to the Energy Charter Treaty since 1995 and a member of the World Trade Organization since 2000.The reforms that followed have included adoption of the Law on Energy and Water Supply and the Law on Support of the Renewable Energy Sources in December 2019.Laws on Energy Efficiency and Energy Performance of Buildings were adopted on 21 May 2020.Average annual economic growth of 3.6tween 2017 and 2021 was achieved through structural reforms that stimulated capital inflows and investment,but it was seriously hampered by the Covid-19 crisis.Reforms improved the business environment,strengthened public finances,upgraded infrastructure facilities and liberalised trade.Growth was also supported by increased foreign direct investment(FDI)and was driven by capital accumulation and the sound use of excess capacity rather than by net job creation,with productivity gains concentrated mainly in the Georgia Energy Profile Overview PAGE|3 I EA.CC BY 4.0.non-tradeable sectors.Gross domestic product(GDP)per capita(in current prices)increased from USD 920 in 2003 to USD 5 015 in 2021.1 Georgia has developed a stable and reliable energy sector that has been largely unbundled since the mid-1990s;its primary domestic energy sources are hydropower and fuelwood.The government is focused on securing private investment to construct new hydropower stations,increase thermal generation efficiency and diversify fossil fuel supply sources and routes,but further efforts are required to improve efficiency in domestic energy use and to capitalise on the countrys ample renewable energy potential.Key energy data TES:4.94 Mtoe(natural gas 47.1%;oil and oil products 26.6%;hydro 14.4%;coal 4.3%;bioenergy 4.6%;other renewables 0.5%), 58.3%since 2010.TES per capita:1.33 toe/cap(world average:1.80 toe/cap)TES per unit of GDP:99 toe/2015 USD million PPP(world average:113 toe/USD million PPP)Energy production:1.04 Mtoe(hydro 68.0%;bioenergy 21.8%;coal 3.9%;oil 3.0%;other renewables 2.5%;natural gas 0.7%),-20.5%since 2010.Supply2 2 Georgias energy production covers about one-fifth of its energy demand(21.1%in 2020).Most of Georgias domestic energy production(1.043 Mtoe in 2020)comes from hydro(0.709 Mtoe)and bioenergy(0.227 Mtoe).Fossil fuel production exists but is very limited(40.3 ktoe of lignite,31.8 ktoe of crude oil and 7.7 ktoe of natural gas in 2020).Imports Georgia depends on imports for all its natural gas(2.7 bcm in 2020)and most of its oil products(1.33 Mt in 2020).Oil is imported mainly in the form of refined oil products(42.1%diesel and 40.4%gasoline).1 Preliminary figures for 2021.2 https:/www.geostat.ge/media/28552/Saqartvelos-Energetikuli-Balansi_2018_GEO.pdf.Georgia Energy Profile Overview PAGE|4 I EA.CC BY 4.0.Demand Georgias final energy consumption was 4.49 Mtoe in 2020.From 2000 to 2020,both final energy demand and electricity consumption per capita more than doubled,and are very close to global averages.The final energy mix is relatively diverse compared with other countries in the region.In 2020,natural gas was the first fuel in the mix(38.5%),followed by oil products(29.3%)and electricity(22.0%).The remainder is covered by renewables(5.5%)and coal(4.7%).About 80%of Georgias electricity generation comes from hydro resources(80.5%in 2021),with the remainder produced from natural gas and from a 20.7-megawatt(MW)wind power plant(83.4 GWh in 2020).The residential sector has the largest share of final energy consumption(1.41 Mtoe in 2020),followed closely by transport(1.34 Mtoe in 2020).Although the transport sector has historically claimed the highest share,Covid-19 lockdowns reversed this trend.Renewables The share of renewables in Georgias electricity mix is among the highest in the world(81.1%in 2021).Energy production and self-sufficiency Georgias energy-policy aim is to raise the countrys energy security,guaranteeing an uninterruptable supply of various energy products of acceptable quantity,quality and price to support national interests.As a net oil and gas importer,Georgia relies heavily on imports of natural gas,oil products and hard coal to meet most of its energy needs.In fact,net imports in total energy supply(TES)rose from 47%in 2002 to 81.4%in 2020 to meet rising energy demand.After the energy crisis of 2006,the country began reducing imports from Russia and increasing those from Azerbaijan,with 84.1%of natural gas and 17.9%of oil consumption now imported from Azerbaijan.Gas imports are highest during the winter months when there is a greater need for heating and less hydropower capacity is available for electricity generation.Interconnected with Russia,Azerbaijan,Armenia and Trkiye,Georgia exports its seasonal excesses of electricity from hydropower,but it has registered negative net electricity exports since 2012(except in 2016).Since 2016,Azerbaijan has been Georgia Energy Profile Overview PAGE|5 I EA.CC BY 4.0.transiting its electricity to Trkiye via Georgia.Transits from neighbouring countries peaked in 2021 at 1.18 TWh,of which nearly 61%was transited from Azerbaijan to Trkiye.Because of Georgias substantial rise in domestic energy demand and the seasonality of hydropower generation,the government is exploring all avenues to diversify oil and natural gas supply sources at the same time as aggressively promoting further hydropower development.It is also co-operating closely with neighbouring economies to develop projects for transiting energy through its territory to secure additional natural gas supply sources.Crucial to its energy security,Georgia is trying to develop its own gas storage to hold strategic volumes of gas stocks and to regulate seasonal imbalances in supply and consumption.An underground option with an active gas volume capacity of 210-280 mcm has been studied extensively,but the final decision is still pending.Fuelwood,the main fuel source for space heating in rural areas,accounts for 21.6%of energy produced from domestic sources.Most wood for fuel is harvested unsustainably and used inefficiently,which has led to forest depletion and related environmental problems.While extending gas access to rural areas has significantly reduced fuelwood consumption,it is still more than double the level of sustainable use.To remedy this situation,the state is introducing new forest management practices and supporting the production and use of upgraded modern biofuels made from waste biomass.Energy sector governance Executive As the body tasked with governing the energy sector,the Ministry of Economy and Sustainable Development(MoESD)is responsible for state policy in the energy sector as well as policies related to sustainable development of the countrys economy.3 It leads energy sector reforms to implement the relevant EU directives and regulations in compliance with Energy Community membership.It took over the responsibilities of the former Ministry of Energy in 2017 and can adopt secondary legislation related to the energy sector(through ministerial orders).To ensure sustainable resource development and protection of the environment,the Ministry of Environment Protection and Agriculture(MEPA)develops national 3 In November 2017 the MoESD absorbed the Ministry of Energy,with its functions transferred accordingly.Georgia Energy Profile Overview PAGE|6 I EA.CC BY 4.0.policies and strategies on environmental and natural resource protection and engages in forest and waste management,in addition to other activities.The Georgian Energy Development Fund is a state-owned joint-stock company(JSC)created in 2010 and reporting to the MoESD.Its mission is to develop Georgias renewable energy potential by identifying promising renewable energy projects and supporting their development through pre-feasibility studies and preliminary environmental impact assessments,and by finding investors.The Public-Private Partnership Agency was created following adoption of the Law on Public-Private Partnerships in May 2018.The agencys mandate is to lead the development and implementation of public-private co-operation projects.Georgian State Electrosystem(GSE)is an electricity transmission system operator.The company owns and operates 3 550 km of transmission lines and 93 substations spread throughout the country.The National Dispatch Centre manages the transmission network,and three regional networks(East,West and Kakheti)provide technical maintenance.GSE also manages the cross-border transmission lines interconnecting Georgia with Russia,Trkiye,Armenia and Azerbaijan.Georgias Electricity Market Operator(ESCO)exclusively oversees electricity balancing and guaranteed capacity trading,manages seasonal electricity imports/exports and inspects the wholesale metering nodes.Georgian Oil and Gas Corporation(GOGC)owns the main gas pipeline system and ensures the unimpeded operation of transboundary oil and gas transportation systems on Georgias territory.It also develops and operates gas-fired power plants.Georgian Energy Exchange(GENEX)is a JSC established in 2019 by GSE and ESCO to function as a market operator.GENEXs main tasks include operating the day-ahead market,the intraday market and the bilateral contracts market.It also manages the financial clearing system for the day-ahead and intraday markets.Legislative The Constitution lays out the legislative process for introducing primary legislation in the energy sector.Legislative initiative is the prerogative of the government,ministries(initiating laws through the government),parliamentary committees,groups or individual members of parliament,and citizens when an initiative has at least 30 000 supporters.By default,laws are adopted in three hearings by the parliament and enter into force 15 days after publication.Georgia Energy Profile Overview PAGE|7 I EA.CC BY 4.0.Regulations and secondary legislation are also initiated and passed by the Georgian National Energy and Water Supply Regulatory Commission(GNERC)and the MoESD(through ministerial orders).GNERC does not have the right to initiate primary legislation and its regulations cannot come into force until at least 21 days after initiation,but the time frame for ministerial orders is not regulated.The parliamentary Committee on Sectoral Economy and Economic Policy oversees energy sector developments through regular or topical hearings with the participation of the MoESD and other stakeholders.The parliamentary Environmental Committee is concerned with the environmental impact of energy projects as well as forestry reform,which may influence the use of biomass as a fuel.Judiciary GNERC resolves disputes among regulated market participants or between consumers and service providers in the energy sector.Cases are resolved in open hearings,but if parties disagree with the GNERC decision they are authorised to take their case to the general courts.Among the cases that have been taken to the Constitutional Court,one initiated in 2002 questioned the new tariff adjustment and amendments to the Electricity and Natural Gas Law and the ministerial order related to communal metering.Regulation GNERC,Georgias independent energy and water supply regulator,was established in 1997 and its responsibilities include:regulating the activities of importers and exporters and of the market operator/supplier(ESCO);monitoring the electricity market and approving market rules;licensing electricity generation,transmission,dispatch and distribution;licensing natural gas transportation and distribution;regulating electricity generation,transmission,distribution and end-user tariffs and import prices;resolving disputes;developing metering,billing and collection services;and approving grid codes.GNERC also sets caps on wholesale prices for existing plants based on their costs,except for small and medium-sized hydropower plants(HPPs)developed since 2008.GNERC also does not regulate power purchase agreement prices for new HPPs under development.The State Agency for Oil and Gas was established in 1999 as an independent regulatory body under the Oil and Gas Law,to oversee and regulate oil and gas exploration and production activities.Since 2013,the State Agency for Oil and Gas has been a legal entity under public law within the Ministry of Energy(currently the Georgia Energy Profile Overview PAGE|8 I EA.CC BY 4.0.MoESD)and is responsible for regulating oil and gas operations,oil refining,gas processing,and/or transportation activities in Georgia according to Oil and Gas Law Amendment No.467 of 25 March 2013.Regulatory framework The new Law on Energy and Water Supply,approved by Georgias parliament in 2019,was developed in co-operation with the Energy Community to transpose the requirements of key electricity and gas directives into Georgian legislation.The law creates the legal framework to develop a more independent,competitive and liquid market by unbundling and granting certification to transmission and distribution system operators.In 2019-2020,the Parliament approved the Law on Energy Efficiency,the Law on Energy Efficiency of Buildings,the Law on the Promotion of Production and Use of Energy from Renewable Sources,and the Energy Labelling Law.However,a system of secondary legislation needs to be developed for effective implementation of these laws.This process is ongoing.According to the Energy Efficiency Law,state policy on energy efficiency aims to create a legal framework for energy efficiency,define a national energy efficiency target and eliminate barriers hindering energy efficiency development.On 23 December 2019,the government of Georgia approved the National Energy Efficiency Action Plan 2019-2020 for implementation of the energy efficiency policy by Decree N2680.Since the beginning of 2021,the MoESD has been working on an integrated National Energy and Climate Plan(NECP)for 2030 covering the five priority areas of a possible energy union:energy security the internal energy market energy efficiency decarbonisation and renewable energy sources research,innovation and competitiveness.The draft NECP must be approved by parliament as part of the countrys National Energy Policy and submitted to Energy Community Secretariat in the summer of 2023.Previously,in December 2019 Georgias government adopted a National Renewable Energy Action Plan(NREAP),but its activities covered 2019-2021 only.While the Georgia Energy Profile Overview PAGE|9 I EA.CC BY 4.0.NREAP dictated that support schemes for small-scale heating and cooling from renewable energy sources should not yet be implemented but instead be reflected in bylaws,measures for developing renewable energy are now included in the NECP to be approved in the spring of 2023.The Law on Energy and Water Supply provides the legal basis for power-related secondary legislation,the main pieces of which are the Electricity Market Model Concept and the Electricity Market Rules.By Decree No.246 of 16 April 2020,the government of Georgia adopted the Electricity Market Model Concept,which introduces general organisational principles for the wholesale electricity trade market:Competitive,transparent and free trade on electricity markets.Avoidance of conflicts of interest and discrimination.Sale of electricity on the wholesale market by means of a competitive market,particularly through bilateral agreements and/or on organised electricity markets,including day-ahead intraday and balancing markets.Trade of electricity on organised markets only,by public energy enterprises and service providers using the facilitation mechanism/scheme envisaged under the Law on Facilitation of Production and Use of Renewable Energy.Determination of hourly generation and consumption schedules,means of electricity generation/consumption,and loading capacity by the responsible persons(self-dispatching).Hourly trade on organised markets and,accordingly,liability of market participants for hourly imbalances.Purchase of electricity only on day-ahead and intraday markets to reimburse losses.Allocation of cross-border capacities in accordance with transparent and fair rules.In 2019,the first Energy Exchange was established in Georgia.The Energy Exchange is a neutral,unbiased and transparent organisation that,upon obtaining appropriate licences,will act as an operator of organised electricity markets.The Exchange will ensure the introduction and operation of day-ahead and daily markets through the software services of Nord Pool Consulting.It will apply the Electricity Supply and Consumption Rules and the Electricity(Capacity)Market Rules(2006;amended in 2010 and since),which outline the electricity and natural gas tariff methodology and conditions for retail and power supply markets.In 2013,the government approved Resolution No.214 on the Approval of Rules for Expression of Interest in Conducting Technical and Economic Feasibility Studies for the Construction,Ownership and Operation of Power Plants in Georgia.Georgia Energy Profile Overview PAGE|10 I EA.CC BY 4.0.The Law on Oil and Natural Gas(1999)created a unified legal framework for state regulation,supervision,control and development of oil and gas resources and oil refining,gas processing and transportation,and for pursuing a unified national policy in these fields.It also made the Oil and Gas Agency responsible for regulating the subsector.Key policies The main directions of the draft National Energy Policy(NEP)are:Diversification of external energy supply sources.Increased energy sector resilience throughout the country.Greater renewable energy resource use,to become a regional leader in clean energy production and trade.Development of fossil energy resources for greater energy security.Increased energy supply and consumption efficiency.International energy co-operation,including regional energy trade development.Co-operation through an energy union and with the ENTSO-E Continental Europe Synchronous Area.Energy market reform and establishment of a competitive market.Reduced environmental impact.Climate change mitigation and adaptation.Better service quality and protection of customer interests.Elimination of energy poverty and help for vulnerable consumers.Research,innovation and technological development.The National Integrated Energy and Climate Plan,which forms the appendix of the NEP,formulates the concrete state policies and measures of these directions in detail.Meanwhile,GSE prepared its Ten-Year Network Development Plan of Georgia for 2021-2031 and the MoESD approved it on 17 February 2021 by Order No.1-1/42,and the GOGC Board of Directors has approved the Ten-Year Development Plan for Georgian Gas Transmission Infrastructure 2021-2030.As a participant of COP21 and a signatory to the Paris Agreement,Georgia submitted an Intended Nationally Determined Contribution(INDC)to the United Nations Framework Convention on Climate Change(UNFCCC).Then,in 2021 the Ministry of Environmental Protection and Agriculture,with technical assistance from GIZ,Georgia Energy Profile Overview PAGE|11 I EA.CC BY 4.0.developed and submitted a more ambitious Nationally Determined Contribution(NDC)with its Climate Action Plan 2021-2030.Launched in 2019 and funded through the European Unions EU4Climate programme,Georgias Low Emission Development Strategy(LEDS)aims to develop a gender-sensitive emissions-reduction strategy by mid-century to help Georgia fulfil its Paris Agreement commitments.The LEDS is also meant to be used as a foundation for environmentally sound long-term planning in several sectors:energy;buildings;industry;transport;agriculture;land use,land-use change and forestry(LULUCF);and waste.The draft was submitted in 2022.Energy statistics Official energy statistics are the responsibility of the National Statistics Office of Georgia(Geostat).Seven staff members dedicate part of their time to compiling energy statistics in addition to industry and construction statistics.Energy data are collected annually through a set of questionnaires sent to all sectors of the economy(services are surveyed every five years).Since 2015,enterprises have been obligated by law to reply to surveys and may do so through online forms,but in-person interviews are conducted for households.Geostat aims to increase the use of administrative data for source data or for data-checking.The main energy publication is the Energy Balance of Georgia.It contains annual supply and demand data for all fuels,in physical and energy units broken down by sector,as well as information on power plant capacities.The underlying data can be downloaded from the Geostat website in Excel format.Official annual data are shared with the United Nations Statistics Division(UNSD)and the International Energy Agency(IEA)through five joint IEA/Eurostat/UN Economic Commission for Europe(UNECE)questionnaires.Monthly oil and gas data are also collected and transmitted to the UNSD for publication through the Joint Organisations Data Initiative(JODI).In 2016,when Georgia became an Energy Community member,additional indicators for energy statistics were required in accordance with European Parliament and Council regulations.To fulfil these reporting obligations,Geostat submits annual energy questionnaire responses to the IEA and Eurostat(for coal,electricity,renewables,oil and gas).4 Since 2018,Geostat has also been publishing monthly oil and gas data as well as electricity and gas prices.4 https:/www.iea.org/statistics/resources/questionnaires/.Georgia Energy Profile Overview PAGE|12 I EA.CC BY 4.0.Geostat has an active institutional co-operation policy and holds regular meetings with its main data providers and users,such as the Ministry of Energy(now the MoESD),the GOGC and GNERC.It also leads an informal national energy statistics consulting group that serves as a platform for dialogue and information-sharing among national data providers and users.Geostats official energy statistics are openly accessible in the public domain.5 Since 2014,Geostat has been responsible for compiling the official Energy Balance of Georgia and published the first one in that year(2013 data).To achieve this,it was necessary to introduce new data collection to obtain information on the final consumption of energy resources,and at the same time Geostat adopted international standards and a methodology for collecting and compiling energy data(solid biomass data are considered representative).6 Energy consumption data do not include end-use data from Abkhazia and South Ossetia,however.Furthermore,Geostat conducted a household survey in 2017 to collect information on end uses of energy(e.g.for space heating and cooking),establishing a basis for the government to formulate energy efficiency indicators.7 The survey is to be conducted every five years,and with IEA support Geostat has also begun compiling datasets for the industry and residential sectors.The next household energy consumption survey was conducted in the summer of 2022 and the results will be published before the end of the year.The MoESD is among the main users of Geostats energy data.The energy module of the national greenhouse gas(GHG)inventory,prepared by the Ministry of Environmental Protection and Agriculture,is based mostly on the official energy balance.Although available energy data could be used to improve energy planning,including through long-term energy modelling,this potential is currently being realised to only a limited extent.Geostats medium-term strategy therefore also includes the compilation of energy efficiency data.8 5 https:/www.geostat.ge/en.6 https:/unstats.un.org/unsd/energystats/methodology/ires/.7 https:/webstore.iea.org/energy-efficiency-indicators-essentials-for-policy-making.8 https:/www.geostat.ge/en/modules/categories/630/strategy-for-the-development-of-statistics.Georgia Energy Profile Energy security PAGE|13 I EA.CC BY 4.0.Energy security Energy system adequacy Resource endowment Hydro resources are one of Georgias most important natural riches.Approximately 300 rivers are significant for energy production,with total annual potential capacity of 15 000 MW and production potential of 50 TWh.According to GNERC,however,only 22.5%(3 380.2 MW)are used for hydropower.Georgias wind energy potential is estimated at 4 TWh(1 500 MW).The average wind speed fluctuates from 2.5 metres per second(m/s)to 9 m/s.The most favourable places for wind farms are being identified over the entire country.Meanwhile,solar energy potential is high,with annual solar days ranging from 250 to 280 and amounting to 1 900-2 200 hours.Solar irradiance in Georgia varies between 1 250 kWh/m2 and 1 800 kWh/m2 annually,and total solar energy potential is estimated at 108 MW.Household solar water heating systems have been installed in rural areas,where solar energy warms water to 40-50C.Georgias geothermal water stock is estimated at 200-250 mcm annually.Temperatures range from 30C to 110C,and the total debit is 160 000 m3 per day.More than the 80%of geothermal deposits are in western Georgia and the Zugdidi-Tsaishi geothermal field,as well as in Abkhazia.The relatively low temperature of Georgias geothermal waters does not,however,allow for electricity generation.Economically viable reserves of crude oil were estimated at 5 Mt in 2012 with resources of 50 Mt,and natural gas reserves at 8 bcm with 102 bcm of resources.Hard coal reserves were 201 Mt in the same year,with 700 Mt of brown coal resources,and in 2022,16 bcm of natural gas deposits were discovered near Tbilisi.The government and the private sector continue exploration work,expecting more deposits to be found.System reliability Reliability in both the natural gas and electricity systems is improving.According to the MoESD,there have been no major outages in recent years,owing to rehabilitation and refurbishment of gas and electricity networks.Outages and losses are reported to GNERC as part of licensing obligations and are measured by the standard System Georgia Energy Profile Energy security PAGE|14 I EA.CC BY 4.0.Average Interruption Duration Index(SAIDI)and the System Average Interruption Frequency Index(SAIFI).In 2021,due to planned and unplanned outages the SAIDI indicator totalled 429.87 minutes,and the SAIFI amounted to 5.98 for Telasi JSC.For Energo-Pro(EP)Georgia JSC,the SAIDI indicator reached 1992.48 minutes,while the SAIFI was 24.13.Electricity transmission network losses are around 2%and outages are rare.The collection rate is nearly 100%and estimated commercial losses are minimal.Technical losses in the gas sector are around 0.5%in the transmission network,and loss detection is performed during regular field visits and using the Global System for Mobile Communications(GSM).Equipment for loss detection includes some advanced leak detection technologies and leakage metering equipment.Emergency response The Law on the State of Emergency(2005)defines and regulates emergency response,but Georgia has no declared strategy for emergency stockholding or fuel switching mechanisms for energy supply disruptions.The government estimates that Georgias minimum strategic reserve for gas should be 120 mcm and is considering various storage options.Gas from the countrys proposed underground storage facility would be used to compensate for recurring winter deficits,which are expected to reach 200 mcm by 2030.Emergency oil product reserves are also being considered,to be built up by obligating oil product supply companies to hold stocks of oil products in addition to their normal operating requirements.Possible arrangements and compensation schemes are under discussion.Fuel switching Despite the general trend towards hydropower development,Georgia has no formal strategy for switching away from fossil fuels.In fact,a new gas-fired thermal power plant has been constructed and another 272 MW of capacity is under way to replace old,inefficient thermal units and increase the efficiency of gas-based generation.According to the draft National Energy Policy,the government is planning to improve Georgias energy security by 2030 by:Diversifying external energy supply sources,including gas supply alternatives(i.e.LPG,LNG and CNG swapping options).Georgia Energy Profile Energy security PAGE|15 I EA.CC BY 4.0.Reducing import dependency through energy efficiency and renewable energy development.Developing infrastructure,improving system safety and reliability,and installing SCADA and WAMS systems.Integrating renewable energy into the grid using new clean-energy technologies,including green hydrogen production,storage systems and microgrids.Exploring the countrys own fossil fuel reserves.Creating gas storage and emergency reserves of oil products.Developing its own oil refining capacity.Replacing outdated thermal units with combined-cycle gas plants.Improving security(cyber,kinetic,etc.).Natural gas Infrastructure Georgia has gas pipeline connections with Armenia,Azerbaijan,Russia and Trkiye,and oil connections with Azerbaijan and Trkiye as well as a Black Sea oil terminal in Supsa.It imports natural gas from Azerbaijan and Russia,and transits gas from Russia to Armenia and from Azerbaijan to Trkiye and further to Europe.Georgias oil product imports come from Azerbaijan,Russia and Turkmenistan,and it transits crude oil from Azerbaijan and Kazakhstan to Trkiye.The Karadaghi-Tbilisi gas interconnection is the main pipeline for Georgia to import gas from the Azeri gas field,from the State Oil Company of Azerbaijan Republic(SOCAR).It has a diameter of 700 mm,and the Georgian section is 46 km long.More gas imports reach Georgia from Azerbaijan by way of the South Caucasus Pipeline(SCP),which transports gas from the Shah Deniz field parallel to the route of the Baku-Tbilisi-Ceyhan(BTC)crude oil pipeline from Azerbaijan through Georgia to Trkiye.The SCP is 692 km long(442 km in Azerbaijan and 250 km in Georgia),1 067 mm in diameter and has a capacity of 8 bcm.With the 2019 completion of the second phase of Shah Deniz gas field developments,SCP Expansion(SCPX),and construction of the Trans-Anatolian Natural Gas Pipeline(TANAP)and the Trans-Adriatic Pipeline(TAP),additional gas is now flowing to Trkiye and thence to European countries for a total volume of 16 bcm.To increase system transmission capacity to 24 bcm,a parallel gas pipeline and additional compressor plants(61 MW each)were constructed in Georgia as part of the SCPX and commissioned in 2018.Georgia Energy Profile Energy security PAGE|16 I EA.CC BY 4.0.Underground gas storage is crucial to Georgias energy security,to provide seasonal supply-demand balancing as well as compensate for possible supply interruptions.A 2016 feasibility study by the French company Geostock concluded that it is technically feasible to build an underground gas storage facility in the depleted Samgori Southern Arch oilfield and defined conditions for its commercial viability.However,funds allocated for the project have since been diverted into Georgias Covid-19 emergency fund,so the projects future is uncertain.The North-South Gas Pipeline(NSGP)system is used to supply Georgia with Russian gas and transit it to Armenia.Georgias section of the NSGP(diameter 1 200 mm;length 133 km;operating pressure 55 bars)was built in 1988-1994,traversing eight separate tunnels totalling 4.6 km in length.Currently,the pipeline is still used mainly to transit gas from Russia to Armenia,but significantly less than in previous years.In 2019,the pipeline transported 1.94 bcm of natural gas to Armenia and 0.17 bcm to Georgia.Georgias internal market receives gas through the East-West and North-South Main Gas Pipeline systems,consisting of the Kazbegi,Kakheti,Southern,Ajara and Poti branches.Georgias gas pipeline system is connected to Russias by the North-South Main Gas Pipeline System at the Georgia-Russia border,by the South Caucasus Pipeline entering from Azerbaijan at the Georgian-Azeri border and by the pipeline connection with Armenia near the Georgian-Armenian border.The integrated gas supply system also includes 19 000 km of gas distribution pipelines,gas distribution stations,metering units,and two currently inactive compressor stations.Gas market structure In the gas sector,the GOGC administers the states share of gas obtained under production sharing agreements(PSAs)and manages its preparation,storage,transportation and sale.The GOGC ensures the long-term sustainable development of the wholesale natural gas market to safeguard energy security,and it constructs,commissions,rehabilitates and replaces gas pipelines on Georgian territory.Three companies extracted associated gas in 2021:Ninotsminda Oil Company,a subsidiary of Blake Oil and Gas(XIE licence block);Block Energy(XIF,XIC,XIC,XIB,IX);and NVP Georgia(VIIIB).In addition,American-owned Frontera Resources produces minor amounts of gas and has announced the discovery of huge gas reserves,although no progress or confirmation have yet followed.In 2022,the State Agency of Oil and Gas(SAOG)announced that a 16-bcm natural gas field had been discovered near Tbilisi.Block Energy limited liability company(LLC),the areas current licence-holder with shares traded on the London Stock Exchange,owns Georgia Energy Profile Energy security PAGE|17 I EA.CC BY 4.0.the right to extract resources from the two blocks.The licence requires horizontal drilling,with Block Energy expected to start working on the project late this year or early in 2023.Natural gas transmission,distribution and retail services are fully unbundled in Georgia.GOGC subsidiary Georgian Gas Transportation Corporation(GGTC)is the gas transmission system operator,and the numerous gas distribution system operators are all private companies.SOCAR Gas is the largest distribution system operator with its two subsidiary companies(24.94%and 36.05%of the retail market),and it distributes gas to Georgias regions.Tbilisi Energy is the largest distribution system operator in Tbilisi,with a 24.87%share of the retail market.9 Many private companies are involved in gas retail.GGTC operates the main gas pipeline system,except the Georgian section of the SCP,which is operated by SOCAR.GNERC determines the licensing rules and conditions for natural gas transportation and distribution,and it also regulates the tariffs for natural gas transportation,distribution,pass-through,supply and consumption.Cross-border interconnections Georgia has gas pipeline connections with Armenia,Azerbaijan,Russia and Trkiye.It imports natural gas from Azerbaijan and Russia and transits gas to Trkiye and Armenia.The 1 200-mm and 700-mm North-South Gas Pipelines transport 2-2.4 bcm of natural gas from Russia to Armenia annually.The 692-km SCP,now operated by a SOCAR subsidiary,currently transports about 16 bcm of natural gas from the Shah Deniz gas field and connects to the Turkish gas system at Erzurum;the SCPX will raise natural gas transport to 24 bcm.Cross-border agreements with suppliers in neighbouring countries are bilateral,but Georgia is also focused on developments in gas transit from the Caspian Sea to European markets,as this would diversify its imports and provide transit revenue.Oil and oil products As Georgia does not have a developed oil refining industry,it mainly imports oil products from the world market.Oil products made up 26.6%of Georgias TES in 2020,with imports coming from various countries but mostly Azerbaijan,Russia,Turkmenistan,Romania and Bulgaria.9 GNERC(2020),Annual Report.Georgia Energy Profile Energy security PAGE|18 I EA.CC BY 4.0.Transport infrastructure Oil transport pipelines serve mainly for transit purposes for exporting Azeri and Kazakh oil to the world markets.The oil pipelines passing through Georgia are directly connected to terminals on the Black Sea coast and,through Trkiye,to Mediterranean terminals and Southeast European countries.The BTC pipeline transports crude oil from Azerbaijan via Georgia to Trkiyes Mediterranean port of Ceyhan,and from there the oil is shipped by tanker to world markets.The BTC pipeline is 1 768 km long,with 443 km in Azerbaijan,249 km in Georgia and 1 076 km in Trkiye,and has been in operation since May 2005.Operational since 1999,the Baku-Supsa Pipeline transports crude oil from offshore oilfields in the Caspian Sea(belonging to Azerbaijan)to Supsa,Georgia,on the Black Sea,where it continues to European markets via tankers.Of the pipelines 829 km,375 km are in Georgia,and it has a capacity of 145 000 barrels per day.Recent agreements between Kazakhstan,Azerbaijan and Georgia will ensure the transport of increased volumes of Kazakh oil through these pipelines.Oil market structure The State Agency of Oil and Gas is a legal entity of the Ministry of Energy.Under the Oil and Gas Law,it regulates oil and gas operations,refineries and transportation.The state-owned Partnership Fund owns the GOGC and has transferred 100%of GOGC shares to the Ministry of Energy(now the MoESD)for oversight as well as management rights.The GOGC administers the states share of oil produced under PSAs and manages its processing,storage,transportation and sale.It is responsible for:commissioning,rehabilitating and replacing oil pipelines on Georgian territory;designing and constructing new pipelines;building,sustaining and operating necessary infrastructure;implementing projects for transporting Caspian oil and resources obtained from other regions via trunk pipelines within Georgia;and participating in and implementing national and international projects to explore,transport and supply energy resources to ensure Georgias energy security.The GOGC also funded the construction and commissioning of two 230-MW combined-cycle gas turbine(CCGT)plants in 2015 and 2019,and a 20.7-MW wind farm in 2016.The Association of Oil Product Importers and Distributors was established in March 2004.Its main objective is to assist in creating flexible,simple and clear customs and tax codes for oil production,import and distribution.It is involved in aligning oil market legalisation with the Georgian constitution and other legislation,and co-operates with legislative and executive powers to prepare draft legislation.It also monitors available oil Georgia Energy Profile Energy security PAGE|19 I EA.CC BY 4.0.market information and conducts its own research.Oil product import,storage and transportation are carried out by private businesses.Hydrocarbon exploration and production Investor companies,selected through international tenders,sign PSAs with the state and carry out exploration and production work through Georgian subsidiary operation companies that perform the activities.To date,24 PSAs have been concluded between the government of Georgia and investor companies and,apart from the GOGC,seven oil companies are operating under these contracts:the Norio Operating Company,the Block Operating Company,the Kura Basin Operating Company,NVP Georgia,West Gulf Petroleum Engineering,Georgia Coalition Energy Limited and OMV Petrom.10 Only one company,Saknakhshiri LLC,extracts coal in Georgia.In 2019,after several coalmining accidents,the Georgian Industrial Group sold the company for a symbolic price to the Steel International Trading LLC.According to its managers,the company plans to increase annual production to 400 000 tonnes/yr.Electricity Electricity generation In 2021,HPPs provided 80.5%of Georgias electricity,with natural gas-fired facilities generating 18.8%and wind power accounting for about 0.7%.The 1 300-MW Enguri hydro facility is the backbone of the countrys electricity generation system.Small and medium-sized hydro facilities totalling 2 080.2 MW(as of 2021)also provide domestic power,either on a regular basis or seasonally.11 Because Georgias main long-term policy objective is to satisfy the countrys overall demand for electricity with domestic hydro resources,in addition to tendering new large HPPs the Ministry of Energy has sought foreign investment to develop new small and medium-sized HPPs.The Georgian government plans to facilitate further development of smaller renewable energy technologies,especially micro hydropower plants and solar power systems.Under the Electricity Supply and Consumption Rules,GNERC has ensured micro power plants free access to the network and established fixed tariffs for electricity produced by these plants(Resolution No.20,Amendment to Electricity Supply and 10 https:/www.gogc.ge/en/page/activities-fields/oil/7.11 GNERC(2021),Annual Report.Georgia Energy Profile Energy security PAGE|20 I EA.CC BY 4.0.Consumption Rules).Important steps were also taken in 2015 when GNERC developed a legal framework for net metering.In 2022,feasibility studies were in progress for 100 HPPs(1 014 MW of total capacity),and 56 HPPs(1 914 MW)were at the licensing and construction stage.In 2016,Georgias first wind power plant,Qartli Wind Farm,with installed capacity of 20.7 MW and annual generation of 88 GWh,was commissioned in the Shida Kartli region of the Gori and Kareli municipalities.Qartli Wind Farm LLC,developed by the Georgian Energy Development Fund and the GOGC,was privatised in 2019 when Georgia Capital acquired it for USD 14.4 million.Georgia also has five operational thermal power plants(TPPs):Mtkvari Energy(300 MW);two units at Tbilsresi(270 MW);G-Power gas turbine station(110 MW);and the Gardabani 1 and 2 combined-cycle plants(230 MW and 255 MW).Transmission and distribution Georgian State Electrosystem JSC(GSE)is Georgias largest transmission grid owner.GSE owns and operates 4 357 km of transmission lines and 93 substations all over the country.GSE neither generates electricity nor supplies it directly to consumers.It only provides electricity transmission from hydro,thermal and wind power plants and imports to power distribution companies(Telasi JSC and Energo-Pro Georgia JSC)and direct customers(large companies).The distribution companies in turn deliver the electricity to final customers,and direct customers consume it for their own purposes.Unbundling of the distribution system operators took place in spring 2021,with Telasi JSC and Energo-Pro Georgia JSC defined as the electricity distribution system operators.12 Based on Government of Georgia Resolution N236 of 25 May 2021,starting 1 July 2021 the Tbilisi Electricity Supply Company JSC was obligated to provide public supply services in the area of the Telasi JSC,and EP Georgia Supply was required to offer public supply services in the area of Energo-Pro Georgia LLC.The two companies have been appointed as universal service suppliers,electricity public service providers and suppliers of last resort in their respective territories.On 4 January 2021,GSE and United Energy System(UES)Sakrusenergo JSC signed an agreement transferring the right of perpetual use(perpetual lease)of power transmission lines owned by UES Sakrusenergo JSC to GSE JSC.In addition,GSE and its subsidiary Energo Trans LLC merged in January 2021.Following these structural changes,GNERC certified GSE as a transmission system operator and issued it a new transmission licence that came into force 1 July 2021.12 GNERC Decisions N19/1 of 28 April 2021 and N20/2 of 13 May 2021.Georgia Energy Profile Energy security PAGE|21 I EA.CC BY 4.0.Two companies carry out electricity distribution and supply activities.Telasi JSC,which serves Tbilisi,supplied approximately 2.81 billion kWh to its consumers in 2021.As of 2021,the company had 656 490 customers(37.6%residential and 62.4%non-residential),and customer services and network maintenance and operations are carried out from ten business centres situated in all administrative districts of the city.The total length of power grids in the capital is 6 390 km,including 2 422.3 km of overhead transmission lines and 3 967.76 km of underground cable.There are also 36 step-down substations of 35/6(10)kV and 110 kV,and 2 191 transformer substations of 6(10)/0.4 kV.13 Energo-Pro Georgia JSC is the largest private owner of distribution assets.It accounts for approximately 4.76 billion kWh of power consumption annually(as of 2021),and its service area extends over 58 846 km2(84%of Georgias land base)with total customers exceeding 1.2 million.It owns a 35-kV to 110-kV high-voltage electricity grid,high-voltage 110-kV and 35-kV substations,and 6(10)/0.4-kV transformers.In 2021,EP Georgia unbundled its assets and registered two separate companies.EP Generation JSC owns 15 small and medium-sized HPPs with total capacity of 469.25 MW and one gas turbine power plant with a capacity of 110 MW.14 EP Georgia Supply is a subsidiary company providing electricity supply services for up to 1.2 million customers.According to the GSEs Ten-Year Network Development Plan(TYNDP),Georgias cross-border infrastructure in 2031 will include:with Russia:500-kV,220-kV and 110-kV lines;1 600 MW of capacity with Azerbaijan:500-kV and 330-kV lines;1 400 MW of capacity with Armenia:220-kV and 400-kV lines;700 MW of capacity with Trkiye:400-kV,220-kV,and 154-kV lines;1 400 MW of capacity.The Black Sea Transmission Network(BSTN)Project,commissioned in 2013 and connecting Georgia and Trkiye via the Black Sea,includes a 700-MW back-to-back direct current(DC)interconnection,500-kV transmission lines to Vardzia and Zekari,a 400-kV interconnection line to Meskheti and the 500-kV/400-kV/220-kV substation at Akhaltsikhe.Cross-border electricity trade,electricity demand growth and anticipated seasonal energy exports require transmission infrastructure investments and further development of the network.In its capacity as transmission system operator,GSE has elaborated a Ten-Year Transmission Grid Development Plan to 2031 to meet emerging demand,13 http:/www.telasi.ge/ge/about/activities.14 http:/www.energo-pro.ge/en/company/.Georgia Energy Profile Energy security PAGE|22 I EA.CC BY 4.0.incorporate new generation capacity and achieve even higher reliability standards.The GSE intends to complete numerous projects during 2021-2031:the Batumi-Akhaltsikhe Project the Jvari-Khorga Project the Ksani-Stepantsminda-Mozdok Project Marneuli-Ayrum Project components the Jvari-Tskhaltubo-Akhaltsikhe Project the North Ring-Tskaltubo Project the Guria Project rehabilitation of the 220-kV Kolkhida-1 overhead line(OHL)the Akhaltsikhe-Tortum Project the Batumi-Muratli 1 Project the Namakhvani-Tskaltubo Project rehabilitation of the 500-kV Imereti 1 Project OHL a substation renovation project reinforcement of the Kakheti infrastructure project the Security of Supply of Tbilisi Region Project rehabilitation of the 220-kV backbone Zestaponi-Ksani Project construction of the second circuit of the 330-kV Gardabani-Agstafa Project OHL the Georgia-Russia-Azerbaijan power system connection project(feasibility study)the Georgia-Romania Black Sea Submarine Cable Project(feasibility study).Cross-border projects to increase power exchange and capitalise on energy trade opportunities with neighbouring countries include:the 400-kV Akhaltsikhe-Tortum OHL and the 350-MW high-voltage direct current(HVDC)back-to-back link at Akhaltsikhe substation(SS)the 500-kV Ksani-Stepantsminda-Mozdok OHL and the 500-kV/110-kV Stepantsminda SS the 500-kV Marneuli-Airum OHL,and the 500-kV switchyard with linkage to the 220-kV switchyard at Marneuli SS the 154-kV Batumi-Muratli OHL and the 350-MW HVDC back-to-back link at Batumi SS.Georgia Energy Profile Energy security PAGE|23 I EA.CC BY 4.0.Cross-border interconnections Georgias electricity system is interconnected with those of Russia,Azerbaijan,Armenia and Trkiye.ESCO has the authority to trade electricity with neighbouring countries to balance the needs of the Georgian market,and regional trade is arranged through bilateral agreements and memorandums of understanding(MoUs).The transmission system operator ensures operations with each neighbouring country and signs relevant agreements on technical issues.In January 2012,Georgia and Trkiye signed an agreement on cross-border electricity trade using the Akhaltsikhe-Borcka interconnection.The agreement sets out competitive market trading rules and identifies the terms for managing electricity imports and exports on the line.In 2015,the Khorga substation was completed under the Regional Power Transmission Enhancement Project funded by the Asian Development Bank,and the electricity transit corridor began operating from Russia to Armenia(daily average 30 MW)and from Azerbaijan to Trkiye(daily average 80 MW).Energy transfer between Georgia and Trkiye continues through the 700-MW HVDC converter station and the related 500-kV and 400-kV lines.In 2009,the Azerbaijan-Georgia-Trkiye(AGT)Power Bridge project was established by the transmission system operators of the three countries(AzerEnergy,GSE and TEIAS).The energy bridge became operational in 2015,and 813 million kWh of electricity were transited from Azerbaijan to Trkiye already in 2016.The table below lists existing and planned electricity interconnection lines.Georgia Energy Profile Energy security PAGE|24 I EA.CC BY 4.0.Power exchange capabilities with neighbouring power systems Country Cross-border line Nominal voltage(kV)Exchange TTC summer,(MW)TTC winter,(MW)Mode Russia Kavkasioni AC-3x300 500 Export 570 650 S Import 570 650 S Stepantsminda(Ksani-Stepantsminda-Mozdok)AC-3x300,2023 500 Export 1000 1000 S Import 1000 1000 S Salkhino AC-400 220 Export 50 50 I Import 150 150 I Azerbaijan Mukhranis Veli AC-3x300 500 Export 630 710 S Import 630 710 S Gardabani AC-480 330 Export 630 710 S Import 630 710 S Armenia Alaverdi AC-300 220 Export 150/100 150/100 S/I Import 150/100 150/100 S/I Marneuli(Marneuli-Ayrum)AC 3x330,2025 400 Export 700 700 B Import 700 700 B Trkiye Meskheti AC-3x500 400 Export 1 050 1 050 B Tao(Akhaltsikhe-Tortum)AC-3x500,2022 Import Batumi-Muratli,2025 154 Export 350 350 B Import 350 350 B Adjara AC-400 220 Export 150/150 150/150 I/R Import 150/150 150/150 I/R Notes:S=synchronous mode.I=isolated mode.B=operation with back-to-back station.R=in reserve.Both the Tao and Meskheti 400-kV OHLs can each transfer up to 1 500 MW,but their total transfer capacity is limited by the Akhaltsikhe HVDC back-to-back units,which will have a capacity of 1 050 MW after 2025.Source:GSE(2021),Ten-Year Electricity Network Development Plan of Georgia 2021-2031.Market structure Georgias electricity sector is partially deregulated and unbundled into generation,transmission and distribution companies.Most generation and distribution assets are fully privatised.The wholesale electricity market operates predominantly under bilateral contracts,while the state-owned electricity market operator(ESCO)purchases and resells unsold power Georgia Energy Profile Energy security PAGE|25 I EA.CC BY 4.0.through bilateral contracts.ESCO is responsible for balancing and settlement according to market rules,and it exports surplus power.About 75.9%of all electricity generated is sold through bilateral contracts and the rest through ESCO.The Georgian Energy Exchange was to be launched on 1 September 2022 to introduce day-ahead and intraday markets as well as markets for bilateral contracts,significantly modifying the current electricity trade structure.However,its opening has been repeatedly postponed because of the incompleteness of market operation procedures.Georgias one transmission system operator,GSE,operates the entire transmission grid,including the 500-kV lines and interconnectors leased from Sakrusenergo through a 50/50 joint venture between the Georgian government and Russias Inter RAO UES.Meanwhile,Georgias two distribution system operators are:Energo-Pro Georgia JSC owned by Energo-Pro(Czech company)Telasi JSC owned 75%by Silk Road Holdings BV(and ultimately Russias Inter RAO)and 25%by Best Energy Group LLC.Electricity generators are regulated,partially regulated,or deregulated.The state-owned Enguri and Vardnili HPPs are regulated generators with GNERC tariffs.Most other HPPs have tariff caps,while small HPPs(15 MW or less)and HPPs built since August 2008 are fully deregulated and can sell their electricity at competitive prices to ESCO or any other market participant.Georgia Energy Profile Energy system transformation PAGE|26 I EA.CC BY 4.0.Energy system transformation Energy and climate change In 1994 Georgia acceded to the UN Framework Convention on Climate Change(UNFCCC),and on 21 February 2017,the government of Georgia approved the Paris Agreement.The country also revised its national climate goals and objectives in its updated Nationally Determined Contributions(NDC)document,15 adopted in April 2021.Although Georgia faces national security threats from Russian occupation,economic and political crises,and the Covid-19 pandemic,it has set more ambitious targets16 than in its previous NDC.It remains fully committed to the Conventions objectives and acknowledges the urgent necessity for climate change mitigation and adaptation.To support the countrys sustainable development,Georgias updated NDC aims to:Unconditionally reduce national GHG emissions to 35low the 1990 level by 2030.Conditional on international support,reduce GHG emissions to 50low the 1990 level by 2030 if the world commits to limit average global temperature increase to 2C.Reduce GHG emissions to 57low the 1990 level by 2030 if the world commits to limit average global temperature increase to 1.5C.Nationally Determined Contribution targets Source:Reproduced from Georgia,Ministry of Environmental Protection and Agriculture(2021),Georgias Updated Nationally Determined Contribution.15 https:/www.euneighbours.eu/en/east/stay-informed/publications/georgias-updated-nationally-determined-contribution-ndc.16 In Georgias previous NDC,the unconditional national GHG emissions reduction target for 2030 was about 24low the 1990 level(unfccc.int).Georgia Energy Profile Energy system transformation PAGE|27 I EA.CC BY 4.0.According to Georgias latest National Greenhouse Gas Inventory,17 in 2017 net emissions(including LULUCF)amounted to 12 842 kt CO2-eq and CO2 emissions from fuel combustion were 8.7 Mt CO2( 60%from 2007).The transport sector accounted for 42%of these emissions,followed by the residential sector(20%)and industry(19%).Owing to the large share of hydro in electricity generation(80%),power generation accounts for only 12%of energy-related emissions,and the remaining 6%comes from the commercial sector.Although Georgia was responsible for just roughly 0.04%of the worlds GHG emissions in 2016,18 developing and implementing mitigation and adaptation measures would synergise Georgias adaptive capacity with that of other countries and also create economic,social and environmental benefits.In 2016,the EU-Georgia Association Agreement entered into force,emphasising collaboration in climate change mitigation,adaptation to climate change,emissions trading,integration of climate change into industrial policy,and clean technology development.The Agreement underlines the inevitability of co-operation in technology transfer based on Georgias Low Emission Development Strategy(LEDS),its Nationally Appropriate Mitigation Actions(NAMAs)and its Technology Needs Assessment(TNA).Several documents outline the countrys national climate policy.Georgias recently published NDC defines climate goals and overall targets to 2030,and its Climate Change Strategy and Action Plan details sector-specific targets and relevant measures.Meanwhile,the Long-Term Low Emission Development Strategy(LT LEDS)is intended as a visionary policy document with no concrete mitigation measures or action plan,and its scope extends to 2050.The National Energy and Climate Plan(NECP)outlines integrated energy and climate measures at the national level,and Georgia regularly publishes National Communications(NCs)and Biennial Update Reports(BURs)on climate change issues to meet its UNFCCC obligations(its latest fourth NC was published in April 2021).19 Georgias 2030 Climate Change Strategy and Action Plan accompanies the updated NDC to identify measures to meet unconditional and conditional commitments and mitigation targets in the transport,buildings,energy generation and transmission,agriculture,industry,waste management and forestry sectors.NDCs need to be updated every five years,and countries are expected to set more ambitious goals and targets each time.Under the Paris Agreement,all countries agreed on an enhanced transparency framework for action and support,including clarity and tracking of progress in achieving 17 National Greenhouse Gas Inventory.18 In 2016,Georgias national GHG emissions were 18 534 kt CO2-eq(excluding LULUCF,FNC),while global GHG emissions were 49.4 billion tonnes of CO2-eq(https:/ourworldindata.org/ghg-emissions-by-sector).19 https:/unfccc.int/documents/271341.Georgia Energy Profile Energy system transformation PAGE|28 I EA.CC BY 4.0.the NDCs.Unfortunately,Georgia has not yet developed a national adaptation plan,but its updated NDC identifies several adaptation and vulnerability assessment objectives:Assess the impact of climate change on the coastline,glaciers,forest lands,mountain ecosystems and ecosystem services.Assess the impact of climate change on the availability of groundwater and surface water resources for sustainable use in different economic sectors.Assess and strengthen the adaptive capacity of agricultural production to ensure food security.Assess the effects of climate change on human health and take measures to mitigate damage caused by extreme weather events.Strengthen the adaptive capacity of the most vulnerable winter and coastal resorts.Furthermore,in 2017 Georgia began to develop national indicators and targets for Sustainable Development Goals,which are closely related to GHG emissions reductions.Climate change policy planning happens not only nationally,but also at the municipal and city levels.Indeed,26 Georgian cities and municipalities have joined the Covenant of Mayors initiative to reduce GHG emissions to 20low the 1990 level by 2020 and to 40low by 2030.Signatories are obligated to submit Sustainable Energy and Climate Action Plans(SECAPs)outlining the key actions they plan to undertake up to 2030.Although Georgia has made some progress in developing climate change policy,challenges and barriers impede achievement of its UNFCCC and Paris Agreement commitments:qualified people to staff national and municipal public institutions responsible for climate change policies are in short supply;the states financial resources are insufficient to implement climate change mitigation and adaptation measures;there is a dearth of climate change-related research,academic institutions and educational courses and programmes;public demand for climate protection action is lacking because public awareness is limited;and the country needs an integrated database of projects contributing to climate change mitigation or adaptation.All these obstacles have caused the level and pace of Georgias development and implementation of climate-friendly and sustainable technologies to be low.Energy and environmental protection As all projects to develop renewable or fossil energy sources and establish transmission infrastructure strongly impact the environment,it is essential for Georgia to have sound procedures and proper protective mechanisms in place.In this respect,it has implemented several important reforms in recent years,and its current legislation is largely aligned with EU legislation and directives.Georgia Energy Profile Energy system transformation PAGE|29 I EA.CC BY 4.0.For instance,the country adopted an Environmental Assessment Code in 2017,with its main section implemented in 2018.Its updated legal framework for environmental impact assessments,including key requirements and procedures for environmental monitoring of the energy sector,is based on EU directives for environmental impact assessments and strategic environmental assessments:Directive 2011/92/EU on the Assessment of the Effects of Certain Public and Private Projects on the Environment Directive 2001/42/EC on the Assessment of the Effects of Certain Plans and Programmes on the Environment Directive 2003/4/EC on Public Access to Environmental Information Directive 2003/35/EC Providing for Public Participation in Respect of the Drawing Up of Certain Plans and Programmes Relating to the Environment Directive 2004/35/CE on Environmental Liability Regarding the Prevention and Remedying of Environmental Damage.Georgias Environmental Assessment Code is also based on the principles of the Convention on Environmental Impact Assessment in a Transboundary Context(the Espoo Convention)and its Protocol on Strategic Environmental Assessment and the Aarhus Convention.This new legal framework defines how to assess the impact individual energy projects will have on the natural and social environment,and it establishes appropriate procedures,the scope of public involvement,the decision-making process and other related issues.The law delineates institutional roles and the scope of authority required for appropriate decisions/findings.Before adopting its Environmental Assessment Code,Georgia had already transposed several EU directives into its legislation:Directive 1999/32/EC of 26 April 1999 Relating to a Reduction in the Sulphur Content of Certain Liquid Fuels and Amending Directive 93/12/EEC Directive 2010/75/EU of 24 November 2010 on Industrial Emissions Directive 2001/80/EC of 23 October 2001 on the Limitation of Emissions of Certain Pollutants into the Air from Large Combustion Plants Article 4(2)of Directive 79/409/EEC of 2 April 1979 on the Conservation of Wild Birds.Despite this new legal framework,environmental concerns relating to HPP developments and the construction of high-voltage transmission lines in the mountains of Georgia have yet to be addressed.This is partly due to challenges in the practical implementation of procedures,specifically:Georgia Energy Profile Energy system transformation PAGE|30 I EA.CC BY 4.0.The lax observance and slow implementation of administrative procedures.A lack of methodological clarity and coverage,including cost-benefit analyses,ecological minimum river flow,etc.Low public awareness and participation due to inadequate access to information.Aberrant public perceptions and awareness resulting from exposure to biased and incorrect information.Low availability and poor quality of geographic information systems(GISs)to acquire proper environmental information.Poor indoor air quality caused by inefficient combustion of wet wood fuel.Nevertheless,significant progress has been made in the policies and legal framework for air quality improvement:automatic air monitoring systems have been upgraded;a technical inspection system for vehicles has been introduced;and normative requirements for gasoline and diesel quality have been strengthened.Georgia also introduced an obligation for continuous instrumental monitoring by industrial enterprises,including TPPs,in line with Directive 2010/75/EU of 24 November 2010 of the European Parliament and the Council.Furthermore,it has expanded the countrys natural gas networks and reduced the use of firewood significantly.In fact,the share of firewood in Georgias total energy consumption had fallen to 4.8%or 1.3 million m3 in 2019,down from 2.1 million m3 in 2015.The state is also planning measures to replace low-efficiency stoves that are harmful to public health.To improve environmental governance,Georgia is planning to:Optimise the administrative process for environmental assessments.Perfect and consolidate geo-informational systems and databases.Improve air quality monitoring systems.Promote the use of modern,efficient wood stoves.Energy efficiency The MoESD and its Division of Energy Efficiency and Alternative Energy Resources are the key policy-making entities supporting the development of energy-efficient technologies in Georgia.The MoESD develops,implements and co-ordinates country-relevant sustainability actions;it also supports and co-ordinates energy efficiency in the industry,construction,transport and service sectors,and creates measures that favour a green economy.Georgia has implemented energy efficiency legislation to transpose the Energy Community acquis on energy efficiency.The Law on Energy Efficiency,prepared according to EU Energy Efficiency Directive 2012/27/EU,aims to:Georgia Energy Profile Energy system transformation PAGE|31 I EA.CC BY 4.0.Establish a common framework to promote and implement energy efficiency within the country.Improve energy savings,increase energy supply security,enhance energy independence,and remove barriers to energy efficiency development.Establish a process to develop a national energy efficiency target through an energy efficiency action plan,which would also outline measures to meet the target.Provide a procedure to adopt the energy efficiency action plan.Institute an energy efficiency obligation scheme and/or alternative policy measures to achieve energy savings.Ensure co-ordination among parties to control,monitor and supervise implementation of the countrys energy efficiency policy.The Law on Energy Efficiency of Buildings was prepared according to EU Energy Performance of Buildings Directive 2010/31/EU.Several secondary acts have already been drafted but not finalised to implement this law,which will:Set buildings sector regulations to ensure the improved energy efficiency of existing and new buildings.Introduce minimum energy performance standards and the obligation to adopt a methodology for calculating the energy performance of buildings.Include provisions to establish energy performance certification and the inspection of heating and cooling equipment.Introduce sanctions for breaching the provisions of this law.Georgia adopted a Law on Energy Labelling on 20 December 2019.It transposes Directive 2010/30/EU,and its purpose is to provide standard and additional information about the consumption of energy and other resources,as well as consumption indicators for energy-consuming products in Georgia,which will allow consumers to assess their use of energy and other resources.The government also approved important secondary legislation:a National Methodology for Calculating the Energy Efficiency of Buildings,and Minimum Requirements for Energy Efficiency of Buildings,Parts of Buildings or Elements of Buildings.To implement the primary legislation,a number of bylaws are being developed and adopted,including 19 legislative acts related to the Law on Energy Efficiency,11 legislative acts on the Law on Energy Efficiency of Buildings and 10 legislative acts concerning the Law on Energy Labelling.Work is also under way on Georgias Law on Eco-design.The MoESD has developed a National Energy and Climate Plan(NECP)with 27 horizontal and sectoral measures in buildings,industry,transport,electricity and gas Georgia Energy Profile Energy system transformation PAGE|32 I EA.CC BY 4.0.production and supply to be implemented by 2030.After rounds of public discussions and adjustments,the finalised NECP will be approved by the parliament and submitted to the Energy Community Secretariat.The NECPs wide-ranging measures include:Building certification and minimum energy efficiency standards;annual energy efficiency renovations of 1%of administrative buildings;and an energy efficiency information system for public buildings.Educational programmes and certification mechanisms to train specialists and support the energy service market.Energy-efficient procurement in the public sector.Awareness-raising programmes and preparation of energy managers.A standards and labelling system for energy-consuming equipment.Support for efficient lighting,including the replacement of incandescent lights.Implementation of energy audits and energy management systems in industry.A wide spectrum of energy efficiency measures in transport,including:Public transport infrastructure improvement and a switch to sustainable transport systems Fuel taxation to encourage lower consumption Tax benefits for hybrid and electric vehicles Inspection and standards for transport vehicles(EUR4/EUR5)Urban planning measures,including Tbilisis Green Transport Policy Incentives for railway and other public transport use.In the energy sector:New CCGT power plants to replace simple-cycle units Transmission network improvements and transboundary co-operation Loss reduction in networks through incentive-based regulation.The government encourages municipal activities within the framework of the Covenant of Mayors.Of the 26 cities and towns that have joined,most have already prepared energy action plans.Concrete energy efficiency targets for 2030 will be fixed in the final draft of the NECP.Renewable energy The share of renewable energy in Georgias energy supply in 2020 was 19.5%,of which 15%was electricity produced by hydroelectric plants and 5%was biomass-based(i.e.firewood and agricultural waste used for heating).As Georgia lacks significant fossil fuel Georgia Energy Profile Energy system transformation PAGE|33 I EA.CC BY 4.0.reserves,it relies primarily on renewable energy(mainly hydropower)for energy security.As of 2021,the share of renewable energy in electricity production was 81%,provided by hydropower and one wind farm.Hydropower Of Georgias 4 533 MW of installed power generation capacity,2 381 MW are reservoir hydropower plants and 942 MW are run-of-river facilities.Small power plants(less than 15 MW of capacity)contribute 282 MW.In 2021,electricity production totalled 12 645 MWh,with reservoir plants generating 5 318.1 MWh and seasonal run-of-river plants contributing 4 022.1 MWh.Small power plants generated 841.9 MWh of clean energy.In 2021,seven large HPPs used for seasonal regulation of electricity production generated 42%of the countrys total generation:20 Engurhesi(1 300 MW)state-owned Vardnilhesi 1(220 MW)state-owned Khrami 1(113 MW)owned by Inter RAO Khrami 2(110 MW)owned by Inter RAO Shaorhesi(38 MW)owned by JSC Energo-Pro Georgia Dzevrulhesi(80 MW)owned by JSC Energo-Pro Georgia Zhinvalhesi(130 MW)owned by JSC Georgia Capital.The technically and economically feasible potential of Georgias hydropower resources is 2 286 projects,offering generation of 30 TWh/year at a construction cost of less than USD 0.35/kWh.Along with providing additional energy,hydropower development would allow Georgia to integrate greater volumes of solar and wind power and also regulate waterflow in periods of extreme runoff and for various needs,thereby contributing to climate change mitigation and adaptation.However,as hydropower development is complex,realising its full potential will require thorough study and proper planning.Major challenges impeding hydropower development in Georgia include ineffective implementation of environmental impact assessments and public communication procedures(resulting in public opposition and bias against infrastructure projects);an absence of clear and transparent procedures for public-private partnerships with minimum administrative burden;and a lack of qualified strategic investors with adequate financial and technical resources.20 GNERC(2022),Energy data.Georgia Energy Profile Energy system transformation PAGE|34 I EA.CC BY 4.0.Solar and wind Reliable and comprehensive assessments of Georgias solar and wind potential still need to be conducted,involving an accurate evaluation of resources and geospatial analysis using a GIS.Wind potential has been roughly estimated at 1 500 MW of capacity,for 4 TWh of average annual electricity generation.Concerning solar energy,annual sunshine days range from 250 to 280(1 900 to 2 200 hours)in most regions of the country,indicating considerable solar PV and solar thermal potential.The medium-term assessment for wind and solar power potential is based mostly on network and balancing considerations.21 Georgias electricity transmission system operator(GSE)estimated that the countrys power system would be able to accommodate 333 MW of wind and 130 MW of solar capacity during 2020-2022.However,adding more reservoir HPPs to the system would permit the integration of 1 332 MW of wind and 520 MW of solar.As of April 2022,Georgia had 397 solar PV installations(each below 500 kW)for a total capacity of 20.4 MW.In addition,the Ministry of Infrastructure initiated and is financing a GEL 2-million project to install autonomous micro-PV plants in sparsely populated,hard-to-reach villages in mountainous regions.At a larger scale,the government has signed 31 MoUs for solar power plants.Total installed capacity is 146 MW,with expected annual electricity generation amounting to 200 million kWh.It has also signed 13 MoUs for wind power plant projects,with total capacity of 740 MW and expected generation of 2.65 billion kWh.Construction of an 8-MW project has begun.Georgias only wind power plant(Qartli,20.7 MW)was commissioned in 2016 and had a high(46%)capacity factor in 2021.Geothermal Georgia has over 250 natural and artificial geothermal sources in 44 geothermal fields,more than 80%of which are in western Georgia.Geothermal water,used mainly for simple household or agricultural(greenhouse)purposes,varies in temperature from 30C to 110C.The share of geothermal energy in the countrys energy balance is insignificant.The Zugdidi-Tsaishi geothermal area has nine productive and seven reinjection wells,and three observation bore-hole wells considered to be exploitable.In addition,two deposits are known to contain geothermal water,from which up to 30 000 m3 could be 21 NVE(2021),Hydro Power Potential in Georgia.Georgia Energy Profile Energy system transformation PAGE|35 I EA.CC BY 4.0.obtained for reinjection twice a day.Poti,Georgias main port city,could be supplied with geothermal water from the Kvaloni and Menjisi water deposits.Biomass Woody biomass has been one of Georgias main sources of heating for years,especially in rural regions.However,with greater access to gas and a reduction in available forest resources,firewood consumption has decreased significantly.Bioenergy supplies in 2019 amounted to 10 279 TJ(1.3 million m3)or 4.8%of total energy consumption,mainly consisting of woody biomass.A small amount of solid modern biofuel(pellets and briquettes)is produced from forestry and agricultural waste.The sustainable regeneration limit of Georgias forests is estimated at 400 000-500 000 m3,meaning that fuelwood is consumed at the expense of forest degradation.Under the ongoing forestry reform,the forestry agency has begun to organise business yards to provide people with legal wood fuel supplies.This system is intended to replace the poorly controlled“social logging”that led to forest degradation.To further reduce pressure on forests,it is necessary to develop alternative energy solutions to meet heating demand with sustainable bioenergy.For instance,inefficient wood stoves should be replaced with efficient ones,and advanced solid biofuels could be made from agricultural waste directly or used in the form of pellets and briquettes.22 Waste As Georgia does not currently use waste for power and heat generation,waste management legislation is needed to encourage the collection and use of biological waste for energy purposes.Helpfully,a new,modern landfill adhering to EU requirements is planned in the Autonomous Republic of Adjara.While there are plans to install a landfill gas capture facility to use this gas for energy,project construction has yet to begin.Institutions,legislation and policies As a structural unit of the MoESDs Energy Reforms and International Relations Department,the Division of Energy Efficiency and Renewable Energy Policy Promotion implements state policies to support renewable energy resource development and the deployment of energy-efficient technologies.In 2010,the government established the Georgian Energy Development Fund(GEDF)JSC to realise the countrys energy potential by mobilising funds to develop and 22 IEA(2020),Sustainable Bioenergy for Georgia:A Roadmap.Georgia Energy Profile Energy system transformation PAGE|36 I EA.CC BY 4.0.implement projects.The Fund identifies prospective renewable energy projects and promotes their development through preliminary screenings,feasibility assessments and environmental impact assessments;it then finds investors and secures their interest in the projects.Furthermore,the Law on the Promotion of Energy Production and Use from Renewable Sources was adopted in December 2019.23 To create an investor-friendly environment,the government offers attractive export markets,free third-party access to the grid and an efficient legal and regulatory framework for greenfield projects based on the build-own-operate principle.Liberal tax legislation,double taxation avoidance agreements with Organisation for Economic Co-operation and Development(OECD)member countries,a rapidly expandable export market,simplified procedures,and a strong commitment to renewable energy source development also create a favourable business climate for potential investors.To further encourage renewable energy development,government of Georgia Resolution No.403 of 2 July 2020 approved a scheme to support the production and use of energy from renewable sources.It provides for payment of a market premium to renewable energy plants(hydro,wind and solar)with an installed capacity of more than 5 MW.Renewable energy project development in Georgia is based on the Law on Public-Private Partnerships24 and Resolution No.515 of the Government of Georgia(October 2018).As of April 2022,43 renewable energy projects were being developed based on the Law on Public-Private Partnerships,with 4 wind power projects at the final phase of implementation.In 2015,GNERC passed a regulation introducing net metering for small-scale power plants(i.e.installed capacity of less than 500 kW)owned by retail consumers.Customers participating in this scheme are eligible to transfer excess energy to the grid.Electricity generated in surplus of self-consumption needs can be injected into the grid and then resupplied upon request later for self-consumption;otherwise,excess electricity can be sold to distribution companies at the weighted average purchase price.As part of Georgias electricity market reform,a day-ahead market and a market for system services are planned.While the planned launch for September 2022 was postponed,the market design is being finalised.23 https:/matsne.gov.ge/ka/document/view/4737753?publication=0(available in Georgian only).24 https:/matsne.gov.ge/document/view/4193442?publication=2.Georgia Energy Profile Energy system transformation PAGE|37 I EA.CC BY 4.0.Meanwhile,the MoESD is finalising the National Energy Policy and the NECP,in which renewable energy sources are central for decarbonisation and energy security.The draft document fixes the binding target for renewable energy in 2030 at 27.4%of total final consumption.According to the draft,in 2022-2030 the state plans to:Integrate renewable energy into buildings and offer local municipality support to install renewable energy systems in new buildings.Introduce renewable energy requirements for new and capital-renovated buildings in 2025,and for public buildings in 2022.Deploy technologies for sustainable use of biomass,ensuring at least 85ficiency in residential and commercial buildings and at least 70ficiency in enterprises.MoESD co-operation under the forestry reform will promote the use of only sustainably harvested firewood.Promote the use of modern solid biofuels(briquettes and pellets)made from forestry and agricultural residues.Implement EU-standard environmental labelling and energy labelling,and other technical standard systems for solar water heaters to promote the use of certified equipment and systems.Create a training and certification system within the national qualification framework for installers of small biomass boilers,solar PV systems,heat pumps and other renewable energy technologies.Initiate informational,awareness-raising and training programmes involving local and regional government bodies to inform residents about the advantages and practicalities of developing and using renewable energy.Co-operate internationally to develop joint projects and statistical transfer schemes.Introduce a single-window principle for local and foreign investors,and co-ordinate co-operation of the various state structures.Technology research,development,demonstration and deployment Georgian RDD&D in general is linked to its Socio-Economic Development Strategy to 2020,but as the countrys science system has over 80 non-prioritised research directions,there are no special energy-related RDD&D provisions in the Development Strategy or in any strategic document related to science and innovation.However,recent reforms have increased support for RDD&D in general,the key institutions providing funding being the Shota Rustaveli National Science Foundation(SRNSF),which supports projects at the initial stages of development,and Georgias Innovation and Technology Agency(GITA),which finances globally scalable start-up projects.Georgia Energy Profile Energy system transformation PAGE|38 I EA.CC BY 4.0.Several laws regulate management of Georgias science,technology and innovation system:The Law on Science,Technologies and Their Development(1994)The Law on Grants(1996)The Law on Higher Education(2004)The Law on Education Quality Improvement(2010)The Law on Innovations(2016).No specific institution has been designed to support energy RDD&D,so energy-related research and innovation projects are implemented within the general RDD&D framework.Although government spending on all RDD&D has increased significantly in recent years,its share in national GDP remains low compared with EU countries(see Figure).Georgias RDD&D intensity the ratio of government RDD&D spending to GDP was 0.23%in 2019,while the average rate for EU countries is 2.3%(2020 data).Furthermore,both the countrys financing of RDD&D and its RDD&D intensity have fallen since 2016.Government of Georgia spending on RDD&D Source:Based on data from Geostat and the Georgia State Treasury.During 2017-2020,Georgia spent GEL 3.3 million on energy-related research,development and innovation through GITA and the Shota Rustaveli National Science Foundation.20152016201720182019Government spending on researchand innovation(million GEL)87.5120.0103.9113.4115.5Share of government spending onresearch and innovation in GDP0.26%0.33%0.25%0.25%0.23%0.00%0.05%0.10%0.15%0.20%0.25%0.30%0.35%0.40%(15.0)5.0 25.0 45.0 65.0 85.0 105.0 125.0million GELGeorgia Energy Profile Energy system transformation PAGE|39 I EA.CC BY 4.0.Public funding for RDD&D in Georgia comes from several sources,and priority-setting and decision making on funding is decentralised.Project-based funding comes from the SRNSF,GITA and Enterprise Georgia,and funding for research institutes comes mainly from the Ministry of Science,Education,Culture and Sport(MES).The MES allocates funding to the universities,which then decide how to redistribute the money to research units/institutes.The SRNSF also provides resources for maintaining and upgrading research facilities and infrastructure.In practice,there is no baseline funding for research in Georgia since MES allocations are mostly used to cover researchers salaries(even though salaries in research and science are well below the countrys average wage,especially for beginner researchers).It is difficult to evaluate private sector spending on energy RDD&D because reliable data and statistics are lacking.Experts estimate that funding from local industry is quite small,and while there is some international funding,it is attracted in an ad-hoc manner.The data are thus too scattered to present a complete picture of total funding for energy RDD&D.According to Geostat,in 2018 the private sector spent GEL 600 000 on RDD&D,and in 2019 it spent GEL 1 181 000.In April 2016,Georgias MES signed an association agreement with the EU Framework Programme for Research and Innovation,Horizon 2020(now Horizon Europe).Becoming an Associated Country means Georgian research organisations can participate in Horizon Europes calls for projects with the same rights as organisations from EU member states.However,due to the high level of competition and Georgias lack of experience,shortage of qualified research institutions and other country-specific barriers,the participation rate of Georgian organisations is quite low.In the previous framework programme(Horizon 2020),Georgias participation was ranked 12th out of 16 Associated Countries.Of the total EUR 8.7 million Georgian organisations received from participating in 85 Horizon 2020-financed projects,EUR 1 million was dedicated to energy-and climate-related projects.In addition,as a Near Neighbour Country(NNC),Georgia is also eligible to participate in the European Cooperation in Science and Technology(COST)programme.Also in the interests of RDD&D,the SRNSF co-operates with Elsevier,which provides access to the electronic journals and data of 21 independent public research institutes and research universities,and the SRNSF pays Georgias annual membership fees for the European Organization for Nuclear Research(CERN)and the Dubna Joint Institute for Nuclear Research.Georgia is also eligible for the North Atlantic Treaty Organization(NATO)Science for Peace and Security programme.This publication has been produced with the financial assistance of the European Union and is part of the EU4Energy programme.This publication reflects the views of the IEA Secretariat but does not necessarily reflect those of the IEAs individual member countries or of the European Union.The work does not constitute professional advice on any specific issue or situation.The IEA makes no representation or warranty,express or implied,in respect of the works contents(including its completeness or accuracy)and shall not be responsible for any use of,or reliance on,the work.EU4Energy is a collaboration between the IEA,the European Union,Focus Countries and other implementing parties,designed to support the aspirations of Focus Countries to implement sustainable energy policies and foster cooperative energy sector development at the regional level.Subject to the IEAs Notice for CC-licenced Content,this work is licenced under a Creative Commons Attribution 4.0 International Licence.This document and any map included herein are without prejudice to the status of or sovereignty over any territory,to the delimitation of international frontiers and boundaries and to the name of any territory,city or area.IEA Publications International Energy Agency Website:www.iea.org Contact information:www.iea.org/contact Typeset in France by IEA-March 2023Cover design:IEA
0人已浏览
2023-03-29 42页
5星级
IEA:2023年东盟可再生能源投资机遇与挑战分析报告(英文版)(46页).pdf
A Joint Report by the International Energy Agency and Imperial College LondonASEAN Renewables:Opportunities and ChallengesMarch 20232Table of ContentsExecutive SummaryIntroductionInvestment Opportunities and ChallengesASEAN Renewable Power InvestmentsThe role of blended finance Cost of capital metrics for ASEAN infrastructure and renewablesOnshore Wind Utility-Scale Solar PVCommercial-and Industrial-Scale Solar PVFinancial performance of ASEAN infrastructure and renewablesHistorical risk and returnPriorities and Potential SolutionsBox 1:Better data and transparency The Cost of Capital ObservatoryBox 2:Stronger remuneration frameworks the case of auctions in CambodiaBox 3:More robust market for sustainable finance ASEAN taxonomyBox 4:Enhanced role for DFIs and blended financeBox 5:Risk Management Exchange Rate Coverage FacilityBox 6:Improved power system connectivity the ASEAN gridConclusion and ImplicationsAnnex A:Country SheetsAnnex B:IEA ScenariosAnnex C:SE Asia Unlisted Infrastructure Index Breakdown(EDHEC)Annex D:Index Return and Volatility Calculation Methodology3468111214161719192222232425262728304243443Executive SummaryThis report aims to improve financial transparency and provide more data pertaining to clean energy investments in Association of Southeast Asian(ASEAN)Member States1.Our research has conceptualized renewable energy risk and return qualitatively and quantitatively.The report further clarifies the opportunities and barriers for private sector investors,as well as priorities and potential solutions for scaling up renewables investment.Individual ASEAN countries have been analysed separately,and as constituent parts of the regional dynamic.ASEAN countries such as Vietnam,Thailand,Malaysia,Indonesia and Singapore have all committed to either net-zero emissions or carbon neutrality by 2050.Governments have simultaneously increased the role of renewable power in national energy development plans.These dynamics all make ASEAN markets potentially attractive to clean energy investors.Nevertheless,the regions economic development model remains based on fossil fuels,with a high dependence on coal-fired power plants,which account for more than 40%of power generation.To date,renewable power investment in Southeast Asia has grown inconsistently and deployment remains far from harnessing the regions strong resource potential.Average annual capital expenditures of USD 10 billion in solar PV and wind power over the past five years are amongst the lowest globally and only exceed that of Sub-Saharan Africa.Most of these investments were mobilised in only one country Vietnam.Private capital has accounted for only 60%of renewable power investment in Southeast Asia,compared to about 90%in advanced economies.Renewable power development in the region is lagging from inadequate policy and investment frameworks.Regulatory barriers,incumbent interests and inflexible commercial arrangements have enabled the continued prioritisation of fossil generation over renewables.Despite falling costs around the world for renewable technologies,solar and wind project costs remain elevated in Southeast Asia due to lack of deployment scale and underdevelopment of supply chains.Attracting low-cost financing remains a major hurdle for development.With persistent development,operational and economic risks,financing costs for solar PV and wind remain relatively high in many ASEAN Member States and the financial value proposition for private sector investment often remains less clear than in advanced economies.On a deployment-weighted basis,we estimate that investment in onshore wind projects across the ASEAN region is characterised by a nominal cost of capital of around 912%,in local currency terms.This range is around 8-11%for utility-scale solar PV,while that for commercial and industrial-scale solar PV is assessed at around 10-13%.These values strongly depend on underlying interest rate conditions and market-specific dynamics,including project-level commercial and financing arrangements,which can push metrics above or below these ranges.To meet sustainability ambitions,countries in Southeast Asia will require much higher levels of energy sector investment,reaching at least USD 200 billion by 2030,of which over three-quarters in clean energy.These clean energy investments include the widespread rollout of renewables,improvements in energy efficiency,electrification of end uses and the deployment of low-emission fuels,including modern bioenergy,hydrogen-based fuels and carbon capture technology.To attract this level of capital,many energy transition plans and ambitions across the region require better policy design and regulatory improvements to support their implementation.For example,supportive policy incentives in Vietnam have spurred a significant solar and wind buildout over the past five years.However,the process has been characterised by boom-and-bust deployment cycles and significant grid congestion.This report identifies priorities for decision makers to help unlock investment in renewable power,with a focus on attracting lower cost capital from international investors.While country-specific priorities are highlighted in dashboards found in Annex A(covering key markets of Indonesia,Malaysia,the Philippines,Singapore,Thailand and Vietnam),some cross-cutting priorities have emerged.Notably,the investment climate for renewable power in the ASEAN region would greatly benefit from:Better data and transparency around project-level financial performance Stronger regulatory frameworks concerning remuneration for renewables projects More robust financial market frameworks for renewables and transition investments An enhanced role for development finance institutions(DFIs)and blended finance Greater access to risk hedging tools to address credit and currency risks for private investors Improved power system connectivity across the regionProgress is occurring in many of these areas,but stronger efforts are required for the ASEAN region to shift towards a more sustainable energy pathway.The potential benefits of such a shift are considerable,including reduced vulnerabilities to climate change and fossil fuel price volatility,as well as enhanced economic opportunities from clean energy development.This is a fourth report in a series of joint publications by Imperial College London and the International Energy Agency,designed to improve transparency that would enable investors and policymakers to play a bigger role in the energy transition.1 ASEAN Member States include Brunei Darussalam,Cambodia,Indonesia,Lao PDR,Malaysia,Myanmar,the Philippines,Singapore,Thailand,and Vietnam.To refer to this grouping,we use the terms ASEAN and Southeast Asia interchangeably throughout the report4As the world contends with a slowdown in global economic activity,inflation and heightened geopolitical tensions,it is increasingly important to address energy security issues.Against this backdrop of macro uncertainties,we shift our focus to a region facing new risks from an energy security and climate change perspective.Countries in the ASEAN region are amongst the most affected globally by climate change,with substantial socio-economic impacts experienced over the last two decades2.The ASEAN regions economies have experienced high economic and demographic growth,with rapid urbanisation,industrialisation and a continuing rise in energy demand.Securely meeting this increasing demand affordably,calls for a rapid scale-up of energy investment.The acceleration of renewables,in combination with energy efficiency and electrification measures,would better address the regions increasing import bill for gas and oil,which otherwise could reach over 5%of GDP by 20303.The gross domestic product(GDP)of ASEAN member states is forecast to grow at a rate exceeding a majority of advanced and developing economies.According to the International Monetary Fund(IMF),regional GDP is expected to grow at an average rate of 6.2%to 2027,led by Vietnam(10.9%),Malaysia(8.7%),Cambodia(8.3%)and Indonesia(8.2%).Such rapid expansion creates an opportunity for an acceleration of renewables investments.Figure 1.Gross Domestic Product of ASEAN member states from 20172027*To date,fossil fuels(notably power)have largely underpinned the economic growth model of ASEAN countries.Natural gas and coal account for 34%and 30%,respectively,of installed power capacity and 75%of the regions total generation.The installed capacity of coal-fired power plants has grown at an annual rate of 7%since 2017,and utilisation rates remain elevated.Without a dramatic shift in domestic policies and planning,complemented by financial support from international investors,ASEANs rising electricity demand is likely to be met mainly by fossil fuels.Renewable power in the region represents approximately a quarter of installed capacity and power generation(258TWh annual average 20172021).To date,much of this has stemmed from hydropower,which accounts for about half of the installed renewables capacity and more than two-thirds of the renewable electricity output.At the country level,the greatest renewable power deployment has occurred in Vietnam,where solar PV and wind surged from near zero in 2017 to over 22 GW in 2021,spurred by the implementation of feed-in tariffs.Thailand has added over 3 GW of renewables capacity since 2017,followed by Indonesia(2.2 GW),the Philippines(1.3 GW)and Malaysia(0.9 GW).However,renewables have yet to fulfil their large potential in capacity and generation.2 ASEAN Taxonomy for Sustainable Finance(2021),ASEAN Taxonomy Board3 Southeast Asia Energy Outlook(2022),IEANotes:*=forecastSource:IMF,October 2022Introduction01,0002,0003,0004,0005,0006,000201720182019202020212022*2023*2024*2025*2026*2027*In billion U.S.dollarsBruneiCambodiaIndonesiaLaosMalaysiaMyanmarPhilippinesSingaporeThailandVietnam5The structure and design of power markets in ASEAN provide an important backdrop to understanding opportunities for scaling up and successfully integrating renewables.Countries are still in various stages of market liberalisation.Competitive wholesale power markets are in Singapore and the Philippines,where power generation is primarily privatised,and generators compete for dispatch in near real-time bidding.In these countries,the transmission and distribution sectors are functionally unbundled from the generation sector.Market liberalisation has partially progressed in Vietnam and Peninsular Malaysia.Some elements of the generation sector are open to competition for dispatch.Nonetheless,a significant portion of generation is still contracted under long-term PPAs with the state-owned incumbent utilities.Vietnam and Malaysia are structured around single buyers,in which a dedicated market operator entity has been set up,but exists and is ring-fenced within the incumbent utility.Most other power markets in ASEAN are not considered liberalised.Various state-owned entities serve as the incumbent utility(or utilities),with almost no real-time market bidding for dispatch.However,independent power producer(IPP)participation is largely possible and encouraged.4 In Annex A,country-level dashboards for six key markets(Indonesia,Malaysia,the Philippines,Singapore,Thailand and Vietnam)in the ASEAN region provide a more detailed look at such dynamics.4 Authors,based on industry surveys and consultations6Investment Opportunities and Challenges Renewable power investment in the ASEAN region presents a significant opportunity for investors to contribute to sustainable economic growth.Rapidly growing demand for electricity,gradually improving policies and increasingly favourable economics all stand as strong drivers.An important driver for clean energy investments in the ASEAN region is the evolution of a supportive regulatory framework and government plans.5 Faced with the challenge to shift the energy mix,several ASEAN countries have put forth ambitious plans and initiated government-backed investment schemes to accelerate the transition toward clean energy.Countries in the region have collectively put forth net zero emissions,or carbon-neutrality targets covering more than 80%of energy supply.Power sector planning in several markets increasingly sees renewables as the preferred source for new additions.For instance,Cambodias Power Development Plan,released in 2022,foresees that by 2030 approximately two thirds will come from renewable energy.Malaysia aims to have renewables account for 40%of power by 2035.Singapore plans to increase solar power by up to 1.5 GW by 2025 and recently adopted a net-zero emissions(NZE)target by 2050.Such efforts support growing interest in the region by international investors and boost activity by local players who have underpinned renewables investment to date.Strong renewable resource potential across the region also creates opportunities for more ambitious development.However,this development is often lagging due to uncertainty over policy and investment frameworks.For example,Vietnam has one of the best wind resources6 in Southeast Asia with an estimated potential of 311 GW.7 While reporting indicates that Vietnam is likely to increase the role of renewables in its Power Development Plan 8,the release of this plan has been delayed.Moreover,there are indications that fossil fuels may remain the backbone of its economic development in the medium term.Other persistent challenges related to structural and regulatory barriers which have enabled the continued prioritisation of fossil generation over renewables remain.The lock-in of fossil fuel-based electricity sources through inflexible power purchase agreements has generally inhibited renewables investment to date.Incumbent interests in coal,concerns about energy security and uncertainties related to operating under a very different power model have all contributed to overall slow progress in policy and regulatory reform.Higher costs represent another barrier.Despite dramatically falling technology costs for renewables around the world in recent years,capital expenditure requirements for utility-scale solar PV and wind projects remain significantly higher in Indonesia than in China or India.Lack of scale in deployment and underdevelopment of supply chains,amid high domestic content requirements,have all contributed to elevated project costs.Persistent development,operational and economic risks in many Southeast Asian countries also contribute to a relatively high cost of financing.These risks typically fall around priority areas:power sector sustainability,project bankability,financing,the cost of capital,and the degree to which countries have taken an integrated policy approach to scaling up renewables(Figure 2).In many countries,renewables projects are only marginally bankable.This stems in part from lack of certainty over cash flows,but also from foreign exchange risks in some markets,with power purchase agreements priced in local currencies while a portion of project equipment costs(e.g.solar panels,wind turbines)is priced in international currencies.85 Seizing green business growth for Asias energy players(2022),McKinsey6 Sissingh and Arends,Wind Energy Potential Vietnam(2018)7 Exploring Renewable Energy Opportunities in Select Southeast Asian Countries(2019),USAID-NREL partnership8 Authors,based on industry surveys and consultations7In this section,we have outlined some key investment opportunities and challenges.More country specific dynamics(e.g.Indonesia,Malaysia,Philippines,Singapore,Thailand,and Vietnam)are outlined in Annex A.Despite good progress in raising ambition levels,further evolving climate policies and implementation across individual countries will be critical.Better country-level policies could encourage more renewable investments.For example,many countries around the world have brought down the cost of renewable power with well-designed renewables auctions,which effectively allocate and manage risks,improve price discovery,and enhance competition for project development.There is considerable potential for such initiatives to support progress and create greater investment impact in the ASEAN region.Figure 2.Main climate policy ambitions and key investment priorities and risks in selected countries in Southeast AsiaMarketRecent Policy ChangesInvestment PrioritiesPower sector sustainabilityProject bankabilityFinancingIntegrated approachesIndonesiaPlanning for NZE by 2060.More renewable power in long-term plan,though coal still represents almost 65%of generation by 2030.MalaysiaGovernment announced goal to become carbon neutral by 2050 and stop building new coal-fired plants.PhilippinesUpdated nationally determined contribution in 2021SingaporeGovernment announced Net-Zero Emissions by 2050 target in October 2022ThailandAnnounced intention to develop plan for NZE by 2065.Updated power expansion plan has reduced dependency on coal in favour of natural gas.VietnamNZE by 2050 target announced at COP26.Substantial capital is mobilised to renewable power,especially solar,while coal capacity is still planned to expand by 2030.CambodiaCambodias Basic Energy plan recommends renewable power make up 65%of total generation by 2030.Low risk/supportive factor for investment Potential risk factor/barrier for investment High potential risk factor/barrier for investmentSource:Southeast Asia Energy Outlook(2022),IEA8Traditionally,emerging and developing economies(EMDEs)have been reliant on public sources of finance,recently accounting for nearly 60%of clean energy investments9.To achieve climate targets,this trend would need to shift dramatically.Private capital would need to account for 60%of clean energy investment,albeit at a level below that for advanced economies at almost 90%.This is partly due to the elevated role of EMDE state-owned utilities as investors in electricity grids.To facilitate this shift,regulatory and financing frameworks must improve to reduce the costs,risks and barriers around developing clean energy projects in EMDEs and the ASEAN region,in particular.10Clean energy investments in Southeast Asia have risen in cases where governments have established a supportive regulatory framework and clear plans for transforming their energy systems,including reaching net-zero emissions.According to the ASEAN Centre for Energy,during the Covid-19 pandemic,fossil fuels as a share of the primary energy supply decreased in ASEAN member states,whereas the share of total renewable energy increased as renewables investments were included as part of government stimulus packages11.To further align with sustainability milestones and accelerate the transition towards a clean energy economy,countries in Southeast Asia will require much higher levels of energy sector investment,reaching at least USD 200 billion by 2030,of which over three-quarters would need to be devoted to clean energy12.However,investment momentum for renewables has been inconsistent,with insufficient policy signals to support the development of robust project pipelines.With only three years left to reach regional interim renewables targets,which envision renewables to account for 35%of power capacity by 2025,accelerating investments in renewable power and enabling infrastructure,such as electricity networks and battery storage,is critical13.Based on IEA scenarios,investment in the energy system would need to rise significantly to meet growing demand in Southeast Asia.By 2030,investments would need to increase substantially in all cleantech sectors(Figure 4).9 World Energy Outlook(2022),IEA10 World Energy Outlook(2022),IEA11 ASEAN Energy in 2022:Outlook Report,ASEAN Centre for Energy12 Southeast Asia Energy Outlook(2022),IEA13 ASEAN Energy in 2022:Outlook Report,ASEAN Centre for EnergyASEAN Renewable Power InvestmentsFigure 3.Southeast Asia power generation capacity and renewables shareSource:ASEAN Centre for EnergyFIGURE 7 ACHIEVEMENT OF RE SHARE IN TPESNOTE:AEdS IS ASEAN ENERGy dATABASE SySTEM,ATS IS ASEAN TARGET SCENARIO ANd ApS IS ApAEC TARGET SCENARIOFIGURE 8 ACHIEVEMENT OF RE SHARE IN INSTALLEd CApACITy 31925Pu0P 100 150 200APSSDS2016-202026-30Billion USD(2021)Renewables for end-useEVsEfficiencySeries10NetworksFossil fuels w/o CCUSOther low-carbonSolar and windSeries11Low emissions fuelsFossil fuelsShare of clean energyPowerFuelsEnd-use0%2%4%6%8 16-202026-30Power investment2016-202026-30End-useEV salesGridsBatteriesSolar&windRenewablesAC stockWe have outlined the investment level needed,but what is actually being invested in renewables in the region?Between 2016 and 2020,annual average energy investments in Southeast Asia were around USD 70 billion,with those for clean energy below USD 30 billion annually14.Of that,average annual capital expenditures of USD 10 billion in solar PV and wind energy over the past five years are amongst the lowest globally and only exceed that of Sub-Saharan Africa.Moreover,the majority of these investments were mobilised in only one country Vietnam.Private capital accounted for almost 60%of renewable power investments during this period.Additionally,almost half of private capital for power in Southeast Asia was invested in fossil fuel generation.Overall,investments in clean energy follow a worrying trend:for every dollar invested in renewable power capacity in Southeast Asia,another dollar was invested in unabated fossil fuels.This is compared to USD 0.5 in Sub-Saharan Africa,USD 0.3 in China and USD 0.2 in Latin America.15Bloomberg New Energy Finance estimates that financing for solar and wind assets largely represents new projects to be built in the years ahead,reaching USD 15 billion in 2021.This was 29%lower than in 2020,primarily due to the decrease in Vietnams solar market since the expiry of its feed-in tariff(FiT)scheme at the end of 2020,amid much lower activity in the rest of the region.Part of the shortfall was made up by wind financings,again,largely in Vietnam,which increased 60%to approximately USD 8 billion.Vietnams wind capacity reached a record high in 2021,led by local developer Trung Nam Construction and Philippines AC Energy.1614 Global Energy and Climate Model(2022),IEA15 Southeast Asia Energy Outlook(2022),IEA16 1H 2022 Southeast Asia Renewable Energy Investment Trends(2022),BNEFFigure 4.Southeast Asia energy investment under Announced Policies Scenario(APS)and the SDS(left)and share of global investment by select technologies(right)Source:Southeast Asia Energy Outlook(2022),IEA10Figure 5.ASEAN solar and wind annual financing(2018 2022)(Left)and solar new build investment by country(Right)Source:Bloomberg New Energy Finance6.84.321.415.16.3 5 10 15 20 2520182019202020211H2022SolarWind20211H 2022New build investment and acquisitionsBillion USD3.80.80.60.50.30.24.30.40.30.40.10.2 1 2 3 4 5VietnamMalaysiaPhilippinesThailandIndonesiaSingaporeSolar new build investmentBillion USDThe market for acquisitions of existing renewables projects remains small in Southeast Asian countries but saw increased interest from European firms in 2021.Bloomberg estimates further growth in secondary transactions(operating assets and projects under development)as they are easier for international developers relative to greenfield projects.17The role of blended financeBlended finance transactions,the use of catalytic capital from public sources to increase private sector investment in sustainable development,play a significant role in ASEAN countries.Convergences Historical Deals Database(HDD)of blended finance transactions has captured 99 such transactions targeting the ASEAN region,representing an aggregate value of USD 19.75 billion(this includes transactions focused solely and partially on ASEAN countries).Roughly a third(34%)of these transactions have targeted renewable energy projects in the ASEAN region,representing USD 10.3 billion in total financing.These represent 13%of global climate blended finance and 6%of the overall blended finance market.17 Southeast Asia Renewable Energy Investment Trends(2H 2022),BNEF3%95)%9%0%5 %05%BiogasGeothermalHydropowerMixed UseSolarWindSource:ConvergenceFigure 6.Breakdown of ASEAN renewable energy blended finance transactions by energy technology11Over one-third of blended finance investments fund mixed-use transactions(transactions targeting more than one renewable energy technology)within the renewable energy sector,given the high proportion of transactions using a portfolio approach(i.e.,funds).Beyond this trend,blended finance deals in ASEAN countries have most frequently targeted solar(29%)and hydropower(15%)projects.These figures diverge somewhat from what Convergence observes in the global market,demonstrating a heavy concentration in solar transactions(75%of renewable energy deals between 20192021)and wind(25%of transactions between 20192021).The most common investors in renewable energy blended finance deals in the ASEAN region are commercial private investors(40%),followed by development finance institutions(DFIs)(27%),including multilateral development banks(MDBs)and development agencies(19%).Almost a third of ASEAN renewable energy blended finance transactions are between USD 100250 million in size,including projects,funds and companies.In fact,about 60%of transactions in the renewable energy sector in the ASEAN region are larger than USD 100 million,outpacing the global market in terms of investment ticket sizes.Larger deals are critical to securing the investment interest of large-scale investors like insurance companies,pension funds and international financial institutions.In terms of countries,Indonesia and Thailand are the most active blended finance markets in the ASEAN renewable energy sector,accounting for 11 transactions each,closely followed by Vietnam(10)and the Philippines(7).The breakdown of aggregate financing received by individual ASEAN countries largely corresponds with country breakdown by deal count.However,there are some exceptions;for example,Laos PDR is one example of a country that has witnessed larger aggregate financing volumes despite fewer deals due to several large-scale projects and multi-country funds.Figure 7.Investor league table for ASEAN renewable energy blended finance transactions,by number of commitments334666691021Calvert Impact CapitalBank of AyudhyaSumitomo Mitsui CorporationMizuho BankMitsubishi UFJ Financial GroupNetherlands Development Finance Company(FMO)Japan Bank for International CooperationInternational Finance CorporationClean Technology FundAsian Development BankSource:Convergence12Cost of capital metrics for ASEAN infrastructure and renewables To assess the perceived risks and expected returns for unlisted renewable power assets in ASEAN,this section details cost of capital metrics sourced directly from conversations with private and public investors,as well as industry sources and indices.Differentials in the cost of capital for infrastructure and renewables projects are driven by several dynamics,including:Country-level factors,such as base interest rates and currency volatility Technology factors,including technical readiness and operational performance Policies and regulations,including system planning,market structure and administrative requirements Project-level cash flows,including commercial arrangements for pricing and purchase and the degree of industry competition Integration issues,including network infrastructure and system operations Availability of finance by type of investor,stage of investment and type of funds(e.g.,commercial or concessional)For six key markets in the ASEAN region(Indonesia,Malaysia,the Philippines,Singapore,Thailand and Vietnam),many of these dynamics are assessed in more detail in the country dashboards found in Annex A.As in our previous report,this report considers metrics from EDHECinfra to provide a broad benchmark for infrastructure financial metrics18.A more detailed description of the EDHECinfra South-East Asia index,which consists of assets in the Philippines,Malaysia and Singapore(all ASEAN countries),is provided in Annex C.We refer to it to provide a starting point for assessing the cost of capital for unlisted infrastructure in the ASEAN region.We show in Table 1 that the expected equity return for unlisted infrastructure within the index,in local currency terms over the past decade,is 10.5%,with the distribution of returns ranging from under 8%to over 13%.This average expected return is based on a cost of debt of 4.6%,suggesting an overall weighted-average cost of capital(WACC)of 8.1%(in nominal terms).Nevertheless,as described further in Annex C,the composition of this index is limited in terms of geographical and sectoral coverage and so does not provide a robust proxy for assessing the cost of capital for renewable power in the region.18 Climate Infrastructure Investing:Risks and Opportunities for Unlisted Renewables(2022),IEA and CCFITable 1.Southeast Asia unlisted infrastructure financing and profitability metrics,mid-2012 to mid-2022Notes:data are in local currency terms;IRR=internal rate of return;EV=enterprise value;EBITDA=earnings before interest,taxes,depreciation and amortisationSource:The authors,based on EDHECinfra databaseMeanMinMax25th Percentile75th PercentileWACC 8.1%4.7.5%6.6%9.6%Expected Return(IRR)10.5%7.4.6%8.6.1%Cost of Debt 4.6%3.0%6.3%3.6%5.3%EV/EBITDA13.62.754.45.117.913By comparison,in Tables 25,the performance metrics for wind and solar PV projects gathered directly from industry sources and the Cost of Capital Observatory19 point to generally higher levels of expected equity returns and cost of capital(expressed in nominal terms).These metrics vary strongly by market and technology,with wide ranges to reflect these variations.Summary averages are presented on an unweighted basis the simple mean across the countries evaluated for each technology as well as on a capacity-weighted basis,reflecting deployment expectations over the next five years.The following paragraphs give a broad overview of the drivers behind these variations,while the country dashboards in this report provide greater detail on market-level dynamics.The metrics reflect expectations for equity returns and debt pricing by market participants for investment in new renewable power generation projects over 2022 and early 2023.Such expectations can differ from actual returns and are highly dependent on underlying policy and market conditions,which continue to fluctuate in ASEAN.They also integrate points across a year(2022)during which interest rates and currency values fluctuated significantly.As shown in figure 9,10-year government bond yields rose across key markets in ASEAN and the United States in 2022.In some cases,rates reached near pre-Covid 19 levels.In other instances,interest rates increased above pre-pandemic levels.Throughout this period local currencies have experienced high volatility relative to USD.19 Cost of Capital Observatory(2022),IEA,the World Economic Forum,Imperial College London and ETH ZurichTable 2.ASEAN cost of capital metrics for onshore wind and solar PVOnshore wind(unweighted mean)Onshore wind(weighted mean)Utility-scale solar PV(unweighted mean)Utility-scale solar PV(weighted mean)C&I solar PV(unweighted mean)C&I solar PV(weighted mean)WACC(LCY)8.7.4%9.0.3%7.9.3%8.2.5%8.6.0%9.8.8%Expected Return(LCY)11.1.4.5.7.3.0.4.8.7.3.1.0%Cost of Debt(LCY)7.8.0%8.0.0%7.0%9.0%7.3%9.4%7.7%9.5%8.7.3%WACC(USD)6.4%9.1%6.7%9.6%6.0%8.5%6.1%8.5%7.0%9.6%7.8.6%Expected Return(USD)10.1.3.9.9%9.3.8%9.5.8%9.7.2.2.1%Cost of Debt(USD)5.0%7.1%5.0%7.3%4.7%6.8%4.7%6.8%5.7%7.8%6.0%8.3%Leverage ratio68.0s.0f.2q.2g.0s.0e.6r.3Y.2h.3Y.8g.0%Notes:WACC is expressed in nominal terms.LCY=local currency,C&I=commercial and industrial scale;weighted means are calculated based on the country share of 5-year capacity additions forecast in IEA(2022),Renewables 2022.Debt and equity ranges for each technology reflect inflationary environments,interest rate regimes and local currency fluctuations versus USD in recent years,pricing variations by investor and the country-level assumptions detailed in Tables 35Source:The authors,based on investor and industry stakeholder discussions14As such,the lower bounds in the tables below reflects a lower interest rate environment in each country and other risk factors.Given interest rate uncertainity and the long-term perspective investors take into their decisions,including for refinancing projects,our values represent data across different rate regimes.Onshore wind For onshore wind projects,expected local currency-based equity returns average,on a deployment-weighted basis,from over 11%to nearly 15%,higher than that for broader infrastructure.This is strongly driven by the regions largest market(in terms of capacity additions),Vietnam,where IRRs range from 12-15%.These levels in Vietnam reflect the financial attractiveness of the previous feed-in tariff scheme,but also the high level of returns required to compensate for integration and contractual risks there,as well as uncertainty over the next incentive scheme.By comparison,in the Philippines and Thailand(the second and third largest markets,respectively),where tariffs are less generous,but policy and integration risks are lower,IRRs range from over 10%to near 14%.While the availability of long-term PPAs provides some regulatory stability,in Indonesia,the range of 12%to 15%reflects a more limited track record of deployment to date compared with other markets.Across all markets,stakeholders point to a constraint in equity available for early-stage project development,a bottleneck that pertains to other renewables projects as well.Figure 8.Government bond yields(left)and indexed currency movements(right),select countriesSource:Bloomberg0%2%4%6%8 15201720192021202310-year government bond yieldPhilippinesThailandIndonesiaVietnamSingaporeMalaysiaUnited States809010011012013014020152017201920212023USD vs local currency(Jan 2015=100)15In local currency terms,the cost of debt for onshore wind,at 811%on average,is also higher when compared to the broader infrastructure index.The higher cost of debt compared with the infrastructure index(whose data goes only through June 2022)likely reflects recent interest rate increases,depending on geography.It also reflects perceived bankability issues for wind projects and underdeveloped commercial banking systems in some markets(e.g.,Vietnam,Indonesia).Lower credit ratings associated with the main utility power purchaser,as in Vietnam and Indonesia,also contribute to a higher cost of debt in these markets.Projects can generally achieve 7075%leverage ratios in most markets,similar to international benchmarks,such as India.Ratios are lower in Vietnam,at 6570%,where non-recourse project financing structures are also less prevalent.These values depend a lot on the source of funding.Stakeholders indicate that access to commercial debt from advanced economies or credit enhancement through concessional funds(e.g.,guarantees,subordinated debt)can decrease debt costs and enhance leverage ratios.Overall,these metrics for onshore wind point to a WACC range of 9%to over 12%in local currency terms,higher than the SE Asia(ASEAN)unlisted infrastructure index at just over 8%.Still,the broader infrastructure index is heavily concentrated in the Philippines and Malaysia.So,it is possible that the cost of capital for the infrastructure index is underestimated compared to a portfolio that includes additional markets,such as Indonesia and Vietnam.In that case,on average,unlisted renewable power projects in the region may benefit from similar or better financing terms than other unlisted infrastructure assets.The metrics above only concern onshore wind,offshore wind development in Southeast Asia remains nascent.Our discussions indicated growing investment opportunities,with higher equity and debt pricing,and lower leverage levels,for offshore wind projects in markets with good resource potential(i.e.,Vietnam and the Philippines).Table 3.Onshore wind cost of capital metrics for select countriesNotes:WACC is expressed in nominal terms.LCY=local currency;weighted means are calculated based on the country share of 5-year capacity additions forecast in IEA(2022),Renewables 2022.Debt and equity ranges for each country reflect inflationary environments,interest rate regimes and local currency fluctuations versus USD in recent years,pricing variations by investor and the following market assumptions:Vietnam includes projects under previous feed-in tariff(FIT)regime and during post-FIT period Thailand includes tariffs under FIT scheme announced in October 2022 Indonesia includes projects under new tariff scheme announced in September 2022 The Philippines includes projects under the Renewable Portfolio Standard(2020)and Green Auction Program(2022)Source:The authors,based on investor and industry stakeholder discussionsVietnamThailandIndonesiaPhilippinesMean(unweighted)Mean (weighted)CurrencyVNDVNDTHBTHBIDRIDRPHPPHPN/AN/AN/AN/ATechnologyWindWindWindWindWindWindWindWindWindWindWindWindWACC(LCY)9.6.1%7.5%9.7.6.1%7.0%9.8%8.7.4%9.0.3%Expected Return(LCY)12.0.0.5.5.0.0.0.0.1.4.5.7%Cost of Debt(LCY)8.5.0%6.5%8.0.0.0%6.0%8.0%7.8.0%8.0.0%WACC(USD)7.0.0%6.0%8.5%6.8%9.6%6.0%8.5%6.4%9.1%6.7%9.6%Expected Return(USD)11.5.5%9.0.0.0.5%9.0.0.1.3.9.9%Cost of Debt(USD)5.0%7.5%5.0%7.0%5.0%7.0%5.0%7.0%5.0%7.1%5.0%7.3%Tariff currency indexationUSDUSDTHBTHBUSDUSDPHPPHPN/AN/AN/AN/ALeverage ratio65.0p.0p.0u.0e.0p.0p.0u.0h.0s.0f.2q.2Utility-scale solar PVFor utility-scale solar PV projects,expected local-currency-based equity returns average over 10 to near 13%on a deployment-weighted basis.These values vary significantly by country,with expected returns in more established markets(e.g.,Malaysia,the Philippines and Thailand)generally lower.In Vietnam,return expectations are much higher.While deployment there surged over 201920,projects face significant revenue risks.Development has stalled with the expiration of feed-in tariffs for new projects,which have recently been renewed.Indonesia is expected to be the largest deployment market over the medium term,but starting from a low base,with investors expecting relatively high returns to compensate for elevated project costs(partly due to local content requirements)and a more uncertain policy environment.Though still higher than that for the broader infrastructure index,expected equity returns for utility-scale solar PV projects are below those for onshore wind across most markets,reflecting lower perceived integration risks associated with utility-scale solar PV.However,in Vietnam,system integration challenges and curtailment risks are more acute for solar PV projects than wind,pushing up return requirements.In general,stakeholders point to the potential across the region for competitive auctions for power purchase agreements to push down project costs and erode returns over time.Still,such pricing mechanisms have not been rolled out on a widespread scale in ASEAN,and there are uncertainties over the transition towards more competitive pricing schemes.Table 4.Utility-scale solar PV cost of capital metrics for select countriesNotes:WACC is expressed in nominal terms.LCY=local currency;weighted means are calculated based on the country share of 5-year capacity additions forecast in IEA(2022),Renewables 2022.Debt and equity ranges for each country reflect inflationary environments,interest rate regimes and local currency fluctuations versus USD in recent years,pricing variations by investor and the following market assumptions:Vietnam includes projects under previous feed-in tariff(FIT)regime and during post-FIT period Thailand includes tariffs under FIT scheme announced in October 2022 Malaysia includes projects under the current auction scheme Indonesia includes projects under previous scheme as well as new tariff scheme announced in September 2022 The Philippines includes projects under the Renewable Portfolio Standard(2020)and Green Auction Program(2022)Source:The authors,based on investor and industry stakeholder discussions.Debt data for Indonesia are additionally based on the Cost of Capital Observatory(2022)VietnamThailandMalaysiaIndonesiaPhilippinesMean(unweighted)Mean(weighted)CurrencyVNDVNDTHBTHBMYRMYRIDRIDRPHPPHPN/AN/AN/AN/ATechnologySolar PVSolar PVSolar PVSolar PVSolar PVSolar PVSolar PVSolar PVSolar PVSolar PVSolar PVSolar PVSolar PVSolar PVWACC(LCY)10.1.6%7.0%9.2%6.5%8.1%9.4.3%6.5%9.3%7.9.3%8.2.5%Expected Return(LCY)12.5.5.0.0%8.0.5.5.5%9.5.5.3.0.4.8%Cost of Debt(LCY)9.0.5%6.0%7.5%6.0%7.0%8.5.5%5.5%7.5%7.0%9.0%7.3%9.4%WACC(USD)7.5.5%5.5%8.0%5.1%7.3%6.3%8.7%5.5%8.0%6.0%8.5%6.1%8.5%Expected Return(USD)12.0.0%8.5.5%7.0%9.0.5.0%8.5.5%9.3.8%9.5.8%Cost of Debt(USD)5.5%8.0%4.5%6.5%4.5%6.5%4.5%6.5%4.5%6.5%4.7%6.8%4.7%6.8%Tariff currency indexationUSDUSDTHBTHBMYRMYRUSDUSDPHPPHPN/AN/AN/AN/ALeverage ratio65.0p.0p.0u.0p.0u.0.0p.0p.0u.0g.0s.0e.6r.3Stakeholders indicate that local banks are generally comfortable financing utility-scale solar PV projects.While the cost of debt for utility-scale solar PV,at over 7%to more than 9%,in local currency terms,is higher when compared to the broader infrastructure index,it remains lower than that for onshore wind.The highest cost of debt is again present in Vietnam and Indonesia due to higher base interest rates and greater perceived bankability risks for projects.The cost of debt estimate for utility-scale solar PV in Indonesia reflects both stakeholder insights and the results of a survey by the Cost of Capital Observatory.The survey gathered data points for a representative 100 MW solar PV project taking investment decision in 2021.By comparison,the same data was gathered for a 250 MW gas-fired power project.The results pointed to a cost of debt 0.5%lower for utility-scale solar PV than for gas power in Indonesia,an indication of potentially more attractive financing terms emerging for renewables than fossil-fuel-based power,which has so far dominated the generation mix.Overall,these metrics for utility-scale solar PV point to a WACC range of around 8.0%to nearly 11%in local currency terms,somewhat higher than the ASEAN unlisted infrastructure index at just over 8%.Again,the same caveats apply as in onshore wind the lack of projects for the infrastructure index in riskier markets,such as Vietnam,suggests that utility-scale solar PV projects may enjoy a cost of financing that is comparable to or better than that for broader infrastructure when taking a fuller regional view.The solar PV projects in this discussion do not include battery storage.While solar PV plus battery projects have the potential to address production curtailment issues and facilitate integration,such configurations remain costly in terms of upfront investment and have yet to be deployed in Southeast Asia.Commercial and industrial-scale solar PVGiven their smaller size and revenue models dependent on the distribution grid,where developers often face greater barriers to investment,commercial-and industrial-scale(C&I)solar PV typically faces a higher cost of capital compared with utility-scale projects but may also represent a more attractive equity investment in terms of returns.Their cost of capital is also subject to the creditworthiness of the off-taker and developer,which may also lack scale compared with utility-scale solar PV developments.In Southeast Asia,expected local-currency-based equity returns,on a deployment-weighted basis,are estimated at around 12%to 15%for C&I solar PV projects.Lower values are observed in the relatively established markets of Thailand,Singapore and Malaysia.In Thailand,projects can benefit from feed-in tariffs for remuneration,while deployment in Singapore and Malaysia relies on net metering schemes.Capacity additions have been greatest in Vietnam,due to attractive feed-in tariffs.Persistent integration risks and lack of visibility over future projects keep required returns high.Generally,securing bank debt on a non-recourse basis for C&I solar PV can be a significant challenge,translating into lower leverage ratios than utility-scale solar PV.In local currency terms,the cost of debt for C&I solar PV(nearly 9%to over 11%)is higher than that for utility-scale solar PV,while leverage ratios are somewhat lower.The presence of corporate PPA agreements for C&I projects also influences debt pricing in markets such as Malaysia,Singapore and Thailand,but this depends on the quality of the off-taker and structure of the financing.In the case of a high-quality off-taker,the differential with utility-scale solar PV may narrow to only around 0.50%-0.75%,which reflects the smaller project scale.There is considerable potential for the aggregation of existing projects into larger investment vehicles that can be refinanced through the debt capital markets at a lower cost.However,such transactions have yet to be carried out in Southeast Asia.Overall,these metrics for C&I solar PV point to a WACC range of around 10%in local currency terms.18Notes:WACC is expressed in nominal terms.LCY=local currency;weighted means are calculated based on the country share of 5-year capacity additions forecast in IEA(2022),Renewables 2022.Debt and equity ranges for each country reflect inflationary environments,interest rate regimes and local currency fluctuations versus USD in recent years,pricing variations by investor and the following market assumptions:Vietnam includes projects under previous feed-in tariff(FIT)regime and during post-FIT period Thailand includes tariffs under FIT scheme announced in October 2022 Malaysia includes projects under net metering scheme Indonesia includes projects under new tariff scheme announced in September 2022 The Philippines includes projects under the Renewable Portfolio Standard(2020)and Green Auction Program(2022)Singapore includes projects under net metering schemeSource:The authors,based on investor and industry stakeholder discussionsTable 5.C&I solar PV cost of capital metrics for select countriesVietnamThailandMalaysiaIndonesiaPhilippinesSingaporeMean(unweighted)Mean(weighted)CurrencyVNDVNDTHBTHBMYRMYRIDRIDRPHPPHPSGDSGDN/AN/AN/AN/ATechnologySolar PVSolar PVSolar PVSolar PVSolar PVSolar PVSolar PVSolar PVSolar PVSolar PVSolar PVSolar PVSolar PVSolar PVSolar PVSolar PVWACC(LCY)11.2.7%8.2.7%7.6%9.4.6.4%7.7.9%6.5%8.0%8.6.0%9.8.8%Expected Return(LCY)13.5.5.0.0%9.0.5.5.5.5.5%7.5%9.5.7.3.1.0%Cost of Debt(LCY)10.0.5%7.0%8.5%7.0%8.0%9.5.5%6.5%8.5%6.0%7.0%7.7%9.5%8.7.3%WACC(USD)8.8.8%6.7%9.5%6.2%8.4%7.6.0%6.7%9.4%6.1%8.3%7.0%9.6%7.8.6%Expected Return(USD)13.0.0%9.4.4%7.9%9.9.4.0%9.4.4%7.5%9.5%9.7.2.2.1%Cost of Debt(USD)6.5%9.0%5.5%7.5%5.5%7.5%5.5%7.5%5.5%7.5%5.5%7.5%5.7%7.8%6.0%8.3%Tariff currency indexationUSDUSDTHBTHBMYRMYRUSDUSDPHPPHPSGDSGDN/AN/AN/AN/ALeverage ratio60.0e.0.0p.0.0p.0U.0e.0.0p.0.0p.0Y.2h.3Y.8g.0Financial performance of ASEAN infrastructure and renewablesThis section aims to assess the financial performance of unlisted renewable power and broader unlisted infrastructure assets in the ASEAN region.The analysis is conducted by using indices from EDHECinfra as in our previous report20.Please see Annex C for index country and sector breakdowns.The South-East Asia(ASEAN)unlisted infrastructure equity,equally-weighted(local,frozen),renewable power index from EDHECinfra consists of hydropower,geothermal,wind and biomass power generation.As previously mentioned,all renewable power assets are located within the Philippines,which is a limitation of this analysis.Hydropower accounts for two-thirds of the index,and many plants are over a decade old.Geothermal power(17%),onshore wind(8%)and bioenergy(8%)comprise the remainder of the portfolio.The Philippines was an early adopter of policies to promote renewable power,and returns reflect the evolution of incentives,such as feed-in tariffs,which the government implemented over the years.However,the market for renewables there has grown inconsistently over time(see the Philippines country sheet in Annex A).The exclusion of solar PV and the low share of wind assets within the index represent additional limitations of the analysis as these resources represent most of the future deployment potential in ASEAN.Given the critical role of country-level regulatory frameworks and policy mechanisms in shaping risks and returns for these assets,and the varied approaches taken by governments to date,return data from a single country,such as the Philippines,cannot be used as a proxy for returns in the broader ASEAN region.In the previous section,we presented data collected from industry partners who currently invest in wind and solar PV projects in other countries,including Thailand,Vietnam,Malaysia and Indonesia.This helps extend our analysis across a more diversified set of geographies and assets.Historical risk and return The South-East Asia(ASEAN)unlisted renewable power index(100%Philippines RE)posted higher returns than the broader South-East Asia(100%ASEAN assets)unlisted infrastructure index,over a 10-year horizon ending on June 30th,2022,with a total return of 23%compared to 11%for the broader infrastructure index.The renewable power index has also demonstrated lower return volatility.Though returns were lower for renewables over the last five years analysed,they were still higher on a risk-adjusted basis due to the much higher level of volatility associated with broader infrastructure investments.20 Climate Infrastructure Investing:Risks and Opportunities for Unlisted Renewables(2022),IEA and CCFIFigure 9.Composition of SE Asia unlisted renewable power index,by country and sub-sectorSource:The authors,based on EDHECinfra(2022)100g%8%8%PhilippinesHydroGeothermalWindBiomass20Given the strong role of fossil-fuel-based power in the broader infrastructure index,the higher level of volatility associated with that benchmark may stem in part from thermal power assets operating under variable pricing in wholesale power markets,such as in Singapore and the Philippines.The lack of diversification in the unlisted renewable power index means that historical performance has been heavily dependent on deployment and output associated with new and existing hydropower plants in the Philippines.Most hydropower assets in the Philippines are run-of-river plants and do not have reservoirs or pumping capabilities to act as storage.This means they have limited dispatchability,and their output depends on prevailing water table levels and precipitation volumes,which have varied considerably over the last decade,there has been significant annual variability in precipitation from around 2400mm to around 3200mm.Recent year underperformance of the renewable power index could be attributed to the inability of plants to fulfil generation requirements in years of lower water levels.Hydropower capacity within the Philippines has grown by only about 200MW in the last decade,and around 35 projects representing a potential maximum capacity of 3.2GW are at various early stages of development.However,utilisation rates associated with the existing capacity have fallen over time,from 33%in 2012 to below 25%in 2019 and 2020.Capacity factors are also considerably lower than global averages,which sit in the 50% range.Table 6.ASEAN unlisted infrastructure index:total return and volatility Source:The authors,based on EDHECinfra(2022)Figure 10.Total return of the unlisted infrastructure(left)and renewables(right)indicesSource:The authors,based on EDHECinfra(2022)-10-50510152025303506/30/201206/30/201306/30/201406/30/201506/30/201606/30/201706/30/201806/30/201906/30/202006/30/202106/30/2022%Power Generationx-RenewablesEnergy and WaterResourcesTransportSocialInfrastructureNetwork UtilitiesEnvironmentalServicesRenewable Power-2-10123456706/30/201206/30/201306/30/201406/30/201506/30/201606/30/201706/30/201806/30/201906/30/202006/30/202106/30/2022%South-East Asia Unlisted Infrastructure EquityUnlisted InfrastructureUnlisted Renewables1-yearTotal Return10.27%0.18%Volatility3-yearTotal Return6.39%1.31%Volatility8.07%3.63%5-yearTotal Return6.40%4.58%Volatility10.24%3.71-yearTotal Return10.96#.09%Volatility8.96%4.36%Power Generation x-RenewablesEnergy and Water ResourcesTransportSocial InfrastructureNetwork UtilitiesEnvironmental ServicesRenewable Power21At the same time,geothermal power in the Philippines has exhibited relatively steady utilisation rates over the past decade(between 60%and 70%)21 compared to hydro which fell from 33%utilisation in 2012 to 20%in 2020.Although geothermal accounts for a much smaller share of the index,the dispatchable nature of geothermal power and its improving operational performance may have partly buffered the reduced utilisation of hydropower,helping to keep volatility low in the overall renewables index.The renewables index with a focus on the Philippines is narrow and cannot be extrapolated to other countries in the region.However,the data collected in the Philippines represents a starting point for assessing the regions risk and returns for renewables.Given a high degree of regional heterogeneity,this analysis needs to be complimented with additional data points from other ASEAN countries.21 Renewable Energy Statistics(2022),IRENA22Priorities and Potential SolutionsThis section details potential solutions:real-world initiatives and case studies that are helping to address priorities for scaling up investment in renewables.While several initiatives are underway,many require further development and scale to create a lasting impact on renewables investment across the region.Box 1:Better data and transparency The Cost of Capital ObservatoryTo support the development of an enabling environment for investments in renewable energy projects in emerging economies,the International Energy Agency(IEA),in collaboration with the World Economic Forum,Imperial College London and ETH Zurich,launched the Cost of Capital(CoC)Observatory in September 2022.The CoC Observatory aims to address the obstacles to investing in renewable energy by providing reliable data and improving transparency around clean energy investments in emerging economies.The CoC Observatory tracks and aggregates financing cost data for solar PV and gas-fired power generation across five emerging economies,including Indonesia.It provides a new way to assess project-level performance indicators and better understand the factors behind the USD 800 billion clean energy financing gap between advanced and emerging and developing economies.In addition,it highlights the main drivers leading to higher cost of capital in emerging and developing economies and showcases de-risking efforts,including remuneration mechanisms which have effectively reduced financing costs for clean energy investments.Given the well-documented link between information efficiency and the cost of capital 22,by improving access to quality data,the Observatory aims to help expand the pool of capital allocated towards emerging economies and help them achieve their climate ambitions.By deepening understanding of the major risk profiles across countries,technologies and projects,the Observatory can help facilitate appropriate policy responses.The data in the CoC Observatory is based on survey responses from investors,financiers and developers.The CoC Observatory provides tools and analysis and a dedicated section to highlight case studies.Figure 11.Cost of capital in different countries for a 100 MW Solar PV project22 Easley,D.&OHara,M.,Information and the Cost of Capital(2005),The Journal of FinanceSource:Cost of of Capital Observatory(2022),IEA23Box 2:Stronger remuneration frameworks the case of auctions in CambodiaOver the past decade,prices for solar PV and wind power generation have fallen dramatically around the world.A major driver of this trend has been appropriate risk allocation within contracts,which has enhanced project bankability,and competition,which has supported cost efficiency through well-designed auctions.Over 130 countries have adopted competitive auctions as a transparent way of determining prices for renewable power purchase agreements23.While auction prices for solar PV and wind rose in 2022 by 10-25%(compared to pre-Covid levels)due to higher equipment costs and supply chain constraints,such remuneration mechanisms remain major drivers of private investment,especially in markets with more challenging macro risk environments24.To date,relatively few auctions have been held in Southeast Asia(with auctions occurring in Malaysia,the Philippines,Singapore and Indonesia).For the most part,auctions have taken a backseat to feed-in tariffs and direct selection processes.This has resulted in inconsistent development of a pipeline of bankable projects.As highlighted above,costs for solar PV and wind generally remain higher in ASEAN countries compared with the rest of the world.The experience of Cambodia provides an example of how well-designed auction frameworks combined with blended finance mechanisms can attract investment in a market with a limited track record for renewables deployment.In 2019,the auctioning of 60 MW of utility-scale solar PV capacity attracted 26 developers and resulted in a regional low for the pricing of a solar project at USD 39/MWh.As part of the auction,the Cambodian single-buyer utility(Electricit de Cambodge EDC)provided a 20-year power purchase contract,which also included land and grid connection to help address risks faced by developers.In terms of blended finance,the Asian Development Bank(ADB)provided a sovereign loan to fund grid infrastructure,as well as technical assistance advisory and project preparation services.Figure 12.Comparison of recent auction price awards and tariff schemes for utility-scale solar PV in Southeast AsiaCambodias solar PV auction is highlighted as a“model”for other ASEAN countries25.That said,the replicability and scalability of auctions in Cambodia and Southeast Asia more widely face challenges.In Cambodia,the majority of the highly leveraged financing packages were provided by international development actors.26 Both in Cambodia and across the region,investors face constraints in terms of permitting and licensing,lack of clear policy vision and governance,and questions about the bankability of power purchase agreements and the commercial viability of projects for developers and financiers at lower power price levels.There is considerable potential for competitive procurement and blended finance packages to boost market development,reduce revenue risks and lower financing costs for renewable power in ASEAN.A recently announced joint venture between EDC and the ADB aims to harness such potential in the development of 2 GW of solar PV in Cambodia over the next decade.Nevertheless,questions over how remuneration frameworks will evolve,as well as related measures around existing thermal generation and system integration,continue to keep renewables investment risks elevated in several ASEAN markets.23 Renewables 2022 Global Status Report,REN2124 Renewables(2022),IEA25 Vakulchuk et al.,Cambodia:Five Actions to Improve the Business Climate for Renewable Energy Investment.(2020),ASEAN Centre for Energy 26 Cambodia solar nears COD financing revealed.(2022),IJ Global020406080100Cambodiaauction priceMalaysiaauction priceIndonesiaauction price(Bali)Phillipinesauction priceIndonesiaceiling tariffThailand FIT Vietnam FIT2019202120222022202220222023USD/MWhSource:The authors,based on government and public reporting24Box 3:More robust market for sustainable finance ASEAN Taxonomy Cultivating a robust market for sustainable finance,including through a clear investment taxonomy that can improve access to lower-cost financing for capital-intensive clean energy projects,is an important step towards attracting higher levels of renewable power investment.With the publishing of the ASEAN Taxonomy for Sustainable Finance in 2021,regulators have put forth a framework that could help guide capital flows.Governments in the region increasingly recognise that a taxonomy is important,along with credible transition pathways and measurement of progress through disclosures.The Taxonomy focuses on environmental objectives and is seen as a method to harmonise language and act as a guide for borrowers and investors in their capital allocation processes,climate risk assessments,and evaluations of the sustainability of a project or economic activity in ASEAN member states27.The Taxonomy is non-binding and is principles-based,rather than prescriptive,to reflect the diverse nature of ASEAN member states.These principles aim to:Provide a common language and complement national sustainability initiatives Take into consideration other taxonomies and facilitate an orderly transition towards a sustainable ASEAN Foster inclusivity and benefit for all ASEAN member states Provide a credible framework,including definitions,and where appropriate,be science-based Align,or not conflict,with the sustainability initiatives taken by the capital market,banking and insurance sectorsFigure 13.Overview of Taxonomy ClassificationsIn practice,the Taxonomy puts forth a framework to classify economic activities into green,amber,or red,based on their contribution to decarbonisation,carbon lock-in and climate change mitigation.The Taxonomy includes the electricity sector as a priority sector and is likely to have an important impact in supporting capital allocation decisions for renewable power,which could potentially help reduce the cost of capital.The application of its decision tree framework,particularly around questions of carbon lock-in,may be open to significant interpretation.This may leave the door open for transition-related investments,such as gas-fired power.2827 ASEAN Taxonomy for Sustainable Finance(2021),ASEAN Taxonomy Board28 Joint Report on Multilateral Development Banks Climate Finance(2022),Group of Multilateral BanksSource:ASEAN Taxonomy for Sustainable Finance(2021),ASEAN Taxonomy Board 25Box 4:Enhanced role for DFIs and blended finance In Southeast Asia,renewable investments face several financing constraints and bankability issues,including the availability of capital for early-stage project development,contractual and the scale of projects,which can act as barriers for mobilising capital from commercial and financial providers.The increased provision of blended finance from DFIs is likely to be an important catalyst,alongside policy reforms,in addressing such issues.Notably,MDBs are a primary source of climate finance,having a particular role in funding mitigation activities such as renewable energy.In 2021,MDBs globally provided around USD 51 billion(62%of total MDB climate financing)in climate finance to low and middle-income countries.Over USD 33 billion(65%)was spent on mitigation.29The upcoming energy demand and climate challenges in ASEAN will require multilateral development banks(MDBs)to step up their financing for both mitigation and adaptation in the region over the next decade.While MDBs already have a strong commitment to do so,the speed and scale of their support will be critical.There are several intervention strategies that MDBs can use to increase investment.One such strategy is for MDBs to increase their direct grants and loans to countries by expanding their balance sheet,raising more funds from capital markets and slightly increasing their leverage ratio.Today MDBs are geared around 0.8(they raise 80 cents of debt for every equity dollar on their balance sheet).Although MDBs have traditionally been cautious and under-leveraged to maintain their triple ratings and access low-cost capital,this approach could help them increase their investments.However,MDB financing alone will not be sufficient to meet the renewable energy investment needs of the ASEAN region.As outlined in this report,private finance will play an important role.MDBs must work to attract and,to the extent possible,secure private capital flows to the regions that need it most.Several risks discourage cross-border private investment.Some of these risks can be effectively addressed by the tools and resources that MDBs can provide to secure private investment.These can include guarantees,which provide investors with first-loss risk-absorbing capital,or blended finance mechanisms,where MDBs co-invest or provide technical assistance alongside private capital providers,especially in the early stages of a project.The main objectives of these interventions are to lower the risk,and hence,the cost of financing while increasing the bankability and attractivity for projects and,in future,bringing capital to clean energy technologies in the ASEAN market.Despite efforts to mainstream and prioritise private investment whenever possible,guarantees and blended finance deals still account for a small fraction of MDBs portfolio.Closer to the MDBs core mandate,the technical assistance they provide to countries will remain important.For example,the World Bank has been working with governments in the ASEAN region to develop carbon pricing mechanisms,a key component of putting renewable energy on a level playing field with other fossil fuel-based generation technologies.30 Carbon pricing schemes are in place or under consideration in most ASEAN countries.Initiatives have been taken to go further,such as the Climate Action Data Trust,recently launched to provide technical assistance in building a regional voluntary carbon market.3129 Partnership for Market Implementation Website(2022),World Bank30 Climate Action Data Trust website(2022),World Bank31 Southeast Asia Energy Outlook(2022),IEA26Box 5:Risk Management Exchange Rate Coverage Facility Currency exchange rate risk is a major hurdle to clean energy investment in developing economies.Columbia Universitys Center on Global Energy Policy,the World Bank and the World Economic Forum created a proposal for an Exchange Rate Coverage Facility to unlock investments in EMDE renewables at scale.An Exchange Rate Coverage Facility would be established as an offshore guarantor protecting international lenders against depreciation of local currency payments,while also largely protecting domestic sponsors from related increases for debt service payments arising from currency mismatches between revenues and financing obligations.This facility would absorb this currency depreciation risk,drawing on blended finance resources to pay the shortfall between the value of contracted local currency(LC)payments and foreign currency(FC)debt repayments if the local currency depreciates relative to the pre-defined exchange rate.Critical proposed features of the Facility include:Full coverage for currency shortfalls covering any gap between FC and LC-denominated payment,even from extreme depreciation of the LC Effective protection for both foreign lenders and local stakeholders through the establishment of the Facility as a creditworthy guarantor assuming the depreciation risk on its books Use of carbon credits generated by the project to fund“first loss”under this currency protection Blended finance/burden-sharing by mobilising concessional funding with burden-sharing among international development agencies,host country stakeholders(including the projects carbon credits)and international capital Leveraging funding catalyses larger clean energy capital investments Scalability easy to grow over time to help address the need for increased clean energy investment Complementarity with existing commercial hedging products to create coverageFigure 14.World Bank Exchange Rate Coverage FacilitySource:Benoit et al.,Scaling Clean Energy Through Climate Finance Innovation:Structure of an Exchange Rate Converage Facility for Developing Countries(2022),Columbia|SIPA Center on Global Energy Policy27Box 6:Improved power system connectivity the ASEAN Grid Accelerating the deployment of variable renewable electricity(VRE),solar PV and wind,amid growing demand requires measures to enhance and maintain ASEAN power systems reliability,flexibility and security.Such flexibility can come from a variety of means,including technical resources(e.g.,grids,power plants,storage,demand response),contractual/institutional flexibility(e.g.,around PPAs,fuel supply,curtailment)and better operational practices(e.g.,scheduling,dispatching)32.With most of ASEANs power demand met today by thermal baseload generation,often under inflexible commercial terms,successful integration of renewables going forward will hinge upon a range of measures.Improved regional connectivity and multilateral trade arrangements through the development of the ASEAN Power Grid(APG)are set to act as critical enablers of all this.The APG is a regional initiative conceived in 2007 to coordinate the buildout of a large-scale,intra-regional transmission network.As laid out in the ASEAN Interconnection Master Plan Study(AIMS)III,the APG seeks to more than triple interconnection capacity from under 8 GW in 2020 to 2730 GW over the next two decades33.This expansion would help to:Enhance opportunities for electricity trading within ASEAN and diversify the power supply Decrease energy costs by connecting demand centres with resource-rich areas Reduce ASEANs overall reliance on fossil-fuel-based thermal powerThe start of imports under the Lao PDR-Thailand-Malaysia-Singapore(LTMS)Interconnection Project in 2022,in which up to 100 MW of Lao hydropower is wheeled from north to south using existing power lines,marked an important milestone for this vision.Given the dispersion of ASEANs renewable resources,such projects have the potential to enhance commercial options for flexibility providers(e.g.,Lao PDR),improve balancing in places with rapid VRE growth(e.g.,Vietnam),better connect remote areas(e.g.,in Indonesia)and help resource-constrained economies(e.g.,Singapore)meet decarbonisation goals.Concerning longer-term development,Singapore has initiated a request for proposal(RFP)to import up to 4 GW of low-carbon electricity,around 30%of its supply,into its wholesale market via new interconnectors by 2035.This process grants participants authorisation and an import license but stops short of providing commercial arrangements or financing.While the RFP is attracting interest from 30 companies,outcomes remain too early to assess.Potential projects face uncertainties,which also pertain to wider APG development.All proposed APG interconnections under AIMS are assessed as technically viable34.However,implementation will hinge on efforts to strengthen internal national grids,overcome public funding constraints and tackle regulatory and commercial challenges,including through:Integration of power systems with different market structures,from a single buyer to competitive wholesale,ownership rules and grid codes Boosting availability of remuneration,with appropriate risk allocation,that supports private investment in capital-intensive grid infrastructure and renewables projects Development of models for mobilising private finance for transmission35 Enhancing contractual flexibility for existing thermal generators with offtake guaranteesSuch challenges may keep progress incremental and temper overly ambitious projects for now.Still,the potential benefits are compelling.The APG,when coupled with a high level of renewables deployment well beyond the 2025 target,represents a least-cost pathway to regional power system development36.It also offers better opportunities for creating new jobs,reducing dependence on fossil fuels and avoiding harmful pollution.32 Presentation on Regional Power Grid Connectivity:The ASEAN Power Grid(APG)&Presentation on The ASEAN Interconnection Masterplan Study(AIMS)(2021),ASEAN Centre For Energy33 Presentation on The ASEAN Interconnection Masterplan Study AIMS(2021),ASEAN Centre For Energy34 Attracting private finance to transmission in the Asia-Pacific Region(2022),United Nations Economic and Social Commission for Asia and the Pacific35 Presentation on The ASEAN Interconnection Masterplan Study AIMS(2021),ASEAN Centre For Energy36 Southeast Asia Energy Outlook(2022),IEA28For a successful transition to a lower carbon economy,the deployment of renewables must be significantly accelerated in the ASEAN region.However,the penetration of renewable energy in the region has been slower than in other parts of the world and hampered by risks and barriers to private cross-border investments,some country-specific while others span the region.Our main findings are:When comparing historical risk and return for unlisted infrastructure in ASEAN countries,an index of unlisted renewable power assets outperformed the broader infrastructure index on a ten-year basis,with lower volatility.In recent years,returns of the renewables index have been lower.However,the narrow composition of the renewables index makes its performance dependent on existing hydropower in the Philippines.Our sample is not representative of all assets that todays investors are likely to target in Southeast Asia.Investment in onshore wind projects across the region is characterised by a weighted-average cost of capital of around 912%in nominal,local currency terms.This range is around 811%for utility-scale solar PV,while that for commercial and industrial-scale solar PV is assessed at around 1013%.These values strongly depend on underlying interest rate conditions and market-specific dynamics.Expected equity returns and the cost of debt are higher for onshore wind and solar PV projects compared with corresponding metrics for an index of unlisted infrastructure assets in Southeast Asia over the past ten years.The unlisted infrastructure index,however,is much more limited regarding geographical coverage.The cost of capital for wind and solar PV investments remains relatively high in many ASEAN member states and the financial value proposition for private sector investment in renewables often remains less clear than in advanced economies.To date,private capital has accounted for only 60%of renewable power investment in Southeast Asia,compared to about 90%in advanced economies.This is despite the falling cost of solar PV and wind generation globally and efforts by some Southeast Asia countries and international development actors to kick-start deployment.While these findings are useful for starting to assess renewables investment opportunities in the ASEAN region,the mixed performance results are indicative of the persistent uncertainties that investors face,as well as data shortfalls that could support more robust comparisons,as in our previous reports.Moreover,as mentioned,the narrow composition of the renewables index,dominated by hydropower in the Philippines,is a significant limitation.How does the region move forward?To accelerate the transition to a lower carbon economy,international and domestic policy support to the ASEAN region is critical,along with better regulatory frameworks.Additionally,to transition to a more secure and sustainable growth model,the economies of the ASEAN region must dramatically increase investments in the energy sector as well as the share of capital going to clean energy technologies.The investment levels required to meet sustainable development goals would support a shift in the energy mix while building upon four factors necessary for transition to net-zero emissions by 2050.These include the widespread rollout of renewables,improvements in energy efficiency,electrification of end uses and the deployment of low-emission fuels,including modern bioenergy,hydrogen-based fuels and CCUS37.This shift in the energy mix is necessary to ensure a sustainable future while reducing the vulnerabilities to climate change.37 Southeast Asia Energy Outlook(2022),IEAConclusion and Implications29To attract the required investment levels,we highlighted a few key priorities and potential solutions that could help mobilise these investments.Addressing cross-cutting issues such as financial markets frameworks for renewables and transition investments,as well as currency risk management will be important for attracting cross-border private investments.In the form of development institutions and blended finance,financial catalysts are likely to play an important supporting role in bringing down the cost of capital.Improved power system connectivity across the region is also critical.There are initiatives already underway,now it is time to scale them.The objective of this report is to enable investors and policymakers to help accelerate the energy transition in the ASEAN region.This is our fourth and final report in this series.Our joint aim was to provide more transparency through financial analysis of renewables assets and to make recommendations regarding how climate finance frameworks need to evolve,how to address barriers on foreign investments and suggest bolder government policies to change the energy system across developed and emerging economies.We hope our work will help accelerate progress.30Residential Commercial and public servicesIndustry TransportCoal Oil&Gas Hydropower Solar PVWind Bioenergy GeothermalAnnex A:Country SheetsCountry Name:IndonesiaPower Demand By End-Use Sector(TWh)Power Generation Investment Sources of FinanceElectricity Generation2021 Generation by Technology(299 TWh)Planned 2030 Generation by Technology(445 TWh)based on RUPTL 202130Annual Capacity Additions By Technology(MW)Cross-Cutting Macro IndicatorsPower Market FundamentalsPower Market Investment FrameworkPopulation(mm):275GDP Per Capita(USD,3-yr CAGR):14638(5.46%)Trailing 12M Currency Movement(IDR/USD):-4.98%Sovereign Debt Rating(S&P):BBB10Y Gov.Bond Yield:4.62%Sustainable Debt Issuance(USD,3-yr CAGR):2.85bn,(13.3%)FDI net(USD,3-yr CAGR):21.2 bn(3.8%)FDI%of GFCF:5.8%Energy Subsidies(Yes/No,Type,USD):Yes,Oil($22bn),Electricity($2bn)Fuel net imports(USD):-16.3 bnCO2 Emissions(per capita,3-yr CAGR):2.32t,(2.73%)2030 GHG Reduction Target:32%(unconditional),43%(conditional)Net-Zero Target:Yes,2060Carbon Pricing:Yes for coal power,$2/t60%Coal21%Oil&Gas8%Hydropower5%Geothermal6%Bioenergy0.21%Solar PV&Wind59%Coal16%Oil&Gas10%Hydropower8%Geothermal7%Bioenergy,Solar,WindRankRenewable Power$MillionFossil Fuel Power$MillionOil&Gas$Million1PLN Batam 2000Perusahaan Listrik Negara PLN 6,789BP Global 4,5712Sarawak Energy 875Nalco 4,000 Pertamina 2,3963Orka Energy 850Marubeni 1,659 JX Nippon Oil and Energy 1,7154Star Energy 420 Kansai Electric Power 1,398 CNOOC 1,7105PT International Nickel Indonesia 300Guangdong Guangxin Holdings 1,040Tuban Petro 1,369Market Structure:Single-buyer utility with IPPs Pricing:Mostly set through long-term contracts Grid Ownership:Fully public Generation Ownership:Mix of public and private Total Power Capacity GW:75.5Renewables Capacity GW and%share:8.8/12%Renewables Capacity Target:23%by 202520152015202120212020202020192019201820182017201720162016050100150200250300Coal Fleet Age Avg.:13Peak Demand GW:40Reserve Margin:40%Annual T&D Loss:8.66000200030004000500031Remuneration Mechanisms Renewable Power and Key Enabling TechnologiesMain Drivers,Challenges and Priorities for InvestmentSourcesNotesTechnologyMechanismCeiling Price Level(USD),lifetime avg.DurationCurrency of PaymentInflation AdjustmentGrid onnection and LandOther featuresSolar PV (utility-scale)Competitive auction with ceiling priceUSD 51-90/MWh,varies by size and location30 yearsIDR with indexation to USDNoDeveloper responsibilityTax incentives,accelerated depreciation,local contentSolar PV(distributed)Net meteringExported power receives 100%of retail tariffN/AIDRNoDeveloper responsibilityTax incentives,accelerated depreciation,local contentOnshore WindCompetitive auction with ceiling priceUSD 70-101/MWh,varies by size and location0IDR with indexation to USDNoDeveloper responsibilityTax incentives,accelerated depreciation,local contentHydropower(1 MW)Negotiated tariff with PLNUSD 40-100/MWh,varies by size and location30 yearsIDR with indexation to USDNoDeveloper responsibilityTax incentives,accelerated depreciation,local contentGeothermalNegotiated tariff with PLNUSD 69-104/MWh,varies by size and location30 yearsIDR with indexation to USDNoDeveloper responsibilityTax incentives,accelerated depreciation,local content;concessional funds for explorationBiomass (1 MW)Competitive auction with ceiling priceUSD 81-111/MWh,varies by size and location30 yearsIDR with indexation to USDNoDeveloper responsibilityTax incentives,accelerated depreciation,local contentInvestment&Return DriversChallengesPolicy and Market Priorities Net-zero emissions goal by 2060(2050 for power);Electricity Supply Business Plan(RUPTL)sees doubling of renewable power to 20 GW by 2030,amid strong electricity demand growth Falling technology costs have improved competitiveness of renewables,with two utility-scale solar PV projects in 2022 contracted at under$60/MWh down from over$100/MWh in 2017 The September 2022 announcement of a tariff scheme based on competitive auctions and new location-based,ceiling prices has the potential to enhance the attractiveness and bankability of projects as well as better support system integration GOI has signalled restrictions on new coal-fired power as well as the accelerated closure of existing plants,creating more space for renewables.These efforts have been bolstered by announcements of the first early retirement of a coal plant under the Energy Transition Mechanism and international support under the Just Energy Transition PartnershipIEA:Energy Subsidies,CO2 Emissions,Power Demand by end-use sector,Renewable power annual capacity additions by technology,Electricity generation by technology(2021),Total Installed Capacity(Fossil fuel power based on calculations from S&P Platts),Renewable Power Capacity,Coal Fleet Age(Based on calculations from S&P Platts),Reserve Margin(Java-Bali System),Annual T&D LossesS&P(Platts):Fossil fuel power annual capacity additions by technologyIMF:Population,GDP Per CapitaBloomberg:Trailing 12M currency movement,10Y Gov.yield,Sustainable Debt IssuanceIJ Global:Power market sources of finance World Bank,UN:FDI,GFCF,Fuel net importsGovernment of Indonesia:2030 GHG reduction target,Net-Zero target,Carbon pricing,Planned 2030 electricity generation,Peak demand,Renumeration Mechanisms1.FDI,GFCF,Energy Subsidies,Fuel net imports,Total Power Capacity,and Renewables Capacity current as of 2021 year end,all other values current as of 2022 year end unless otherwise specified;2.All$values in USD;3.Bond yields in local currency;4.CO2 emissions taken from 2020 real IEA data and extrapolated based on GDP growth rate from IMF data to 2022;5.Power market sources of finance calculated based on IJ global asset database project capex&ownership.The asset database capex is incomplete for projects in ASEAN,the numbers represented serve as best estimates based on available data.Although global technology costs have come down,the cost of financing remains relatively high and renewables project costs remain elevated due to local content provisions at 60%PLN remains reluctant to procure more renewables due to cost of solar PV and wind compared with existing generation costs-which are subsidised through coal and gas price caps-as well as perceived integration challenges,raising questions over the implementation of the new tariff scheme and auctions in practice Economic and integration challenges stem in part from the favourable position of thermal power plants,which benefit from fuel price subsidies and inflexible contractual structures.PLNs inability to recover its operating costs through electricity prices,which are also subsidised,contribute to a weakened financial position,inhibiting system transformation Investors lack predictability over the size and schedule of future renewables auctions,which have,to date,also suffered from lack of transparency and complex negotiation processes Put the power sector on more firm financial footing through energy subsidies reform Renegotiate inflexible thermal power plant contracts and accelerate phase out of coal Improve predictability and design of renewables auctions,including development support for land acquisition and feasibility studies,to create a more robust pipeline of projects Diversify commercial arrangements for buying and selling power for independent players Phase-in approaches to local content to better align with domestic manufacturing capacity Boost financing options through enhanced provision of international blended finance mechanisms and continued cultivation of a domestic market for sustainable finance32Residential Commercial and public servicesIndustry TransportCountry Name:MalaysiaPower Demand By End-Use Sector(TWh)Power Generation Investment Sources of FinanceElectricity Capacity2021 Capacity by Technology(42.9 GW)Planned 2035 Capacity by Technology(45 GW)based on Malaysia Renewable Energy RoadmapAnnual Capacity Additions By Technology(MW)Cross-Cutting Macro IndicatorsPower Market FundamentalsPower Market Investment FrameworkPopulation(mm):33GDP Per Capita(USD,3-yr CAGR):33113(4.41%)Trailing 12M Currency Movement(IDR/USD):-2.82%Sovereign Debt Rating(S&P):A-10Y Gov.Bond Yield:4.05%Sustainable Debt Issuance(USD,3-yr CAGR):2.24bn,(44.42%)FDI net(USD,3-yr CAGR):18.6 bn(30.8%)FDI%of GFCF:25.8%Energy Subsidies(Yes/No,Type,USD):Yes,Oil($3bn)Fuel net imports(USD):-7.4 bnCO2 Emissions(per capita,3-yr CAGR):8.25t,(5.11%)2030 GHG Reduction Target:45%(unconditional)Net-Zero Target:Carbon Neutrality,2050Carbon Pricing:No32%Coal6%Oil41%Gas15%Hydropower4%Solar PV2%Bioenergy60%Fossil Fuel21%Hydropower16%Solar PV3%Bioenergy0.1%GeothermalRank Renewable Power$MillionFossil Fuel Power$MillionOil&Gas$Million1 Coara Solar 227Tanjong Energy 2,132PETRONAS 16,5152Tenaga Nasional 147Teknologi Tenaga Perlis Consortium Sdn Bhd 456Royal Vopak 8003SunEdison 42Tenaga Nasional 380 Royal Vopak 2504Sarawak Energy 40PETRONAS 201Petrofac 1975Fumase Malaysia 8 Sabah Government 134SapuraKencana Petroleum Berhad 189Market Structure:Single-buyer utility with IPPs Pricing:Tariffs based on Market Reference Price with cost pass-through mechanism Grid Ownership:Fully public Generation Ownership:Mix of public and privateTotal Power Capacity GW:42.9Renewables Capacity GW and%share:9.3/22%Renewables Capacity Target:40%by 2035Coal Fleet Age Avg.:13Peak Demand GW:23.3Reserve Margin:40%Annual T&D Loss:6.9 152015202120212020202020192019201820182017201720162016050100150200Coal Oil&Gas Hydropower Solar PVWind Bioenergy Geothermal050010001500200025003000350033Remuneration Mechanisms Renewable Power and Key Enabling TechnologiesMain Drivers,Challenges and Priorities for InvestmentSourcesNotesTechnologyMechanismCeiling Price Level(USD),lifetime avg.DurationCurrency of PaymentInflation AdjustmentGrid onnection and LandOther featuresSolar PV(utility-scale)Competitive auctionUSD 43-60/MWh(March 2021)21 yearsMYRNoDeveloper responsibilityTax&financing incentives;foreign ownership capped at 49%Solar PV(distributed)Net meteringAverage system marginal price(C&I projects)10 yearsMYRNoDeveloper responsibilityTax&financing incentives;quota of 800 MW over 2021-23Hydropower(up to 30 MW)Feed-in tariffUSD 51-66/MWh,by size and technology21 yearsMYRNoDeveloper responsibilityTax&financing incentives;capacity quotaGeothermal(up to 30 MW)Feed-in tariffUSD 102/MWh16 yearsMYRNoDeveloper responsibilityTax&financing incentives;capacity quotaBioenergy(up to 30 MW)Feed-in tariffUSD 50-72/MWh,by size and technology21 yearsMYRNoDeveloper responsibilityTax&financing incentives;capacity quotaBiomass (1 MW)Competitive auction with ceiling priceUSD 81-111/MWh,varies by size and location30 yearsIDR with indexation to USDNoDeveloper responsibilityTax incentives,accelerated depreciation,local contentInvestment&Return DriversChallengesPolicy and Market Priorities Carbon neutrality goal by 2050.In planning,it aims to have renewables account for 40%of power capacity by 2035 Current investment driven by capacity awards under solar PV auction in 2021 whose lowest bid registered under$45/MWh-as well as increased quotas under net metering for distributed solar PV In 2022,the government announced intentions to permit direct power purchase of renewables,or corporate PPAs,by private players,which is likely to provide more project development opportunities Malaysia has seen a tripling of sustainable debt issuance over the past three years,indicative of its strong financial ecosystem and growing attractiveness for international capital markets.Its power system and utilities are also on sound financial footing Discussions around a potential national roadmap for renewables-based hydrogen could lead to increased partnerships and pre-development activity for associated renewable power projectsIEA:Energy Subsidies,CO2 Emissions,Power Demand by end-use sector,Renewable power annual capacity additions by technology,Electricity capacity by technology(2021),Total Installed Capacity(Fossil fuel power based on calculations from S&P Platts),Renewable Power Capacity,Coal Fleet Age(Based on calculations from S&P Platts),Annual T&D LossesS&P(Platts):Fossil fuel power annual capacity additions by technology IMF:Population,GDP Per CapitaBloomberg:Trailing 12M currency movement,10Y Gov.yield,Sustainable Debt IssuanceIJ Global:Power market sources of finance World Bank,UN:FDI,GFCF,Fuel net importsGovernment of Malaysia:2030 GHG reduction target,Net-Zero target,Carbon pricing,Planned 2035 generation capacity,Peak demand,Renumeration MechanismsThe Star:Reserve Margin1.FDI,GFCF,Energy Subsidies,Fuel net imports,Total Power Capacity,and Renewables Capacity current as of 2021 year end,all other values current as of 2022 year end unless otherwise specified;2.All$values in USD;3.Bond yields in local currency;4.CO2 emissions taken from 2020 real IEA data and extrapolated based on GDP growth rate from IMF data to 2022;5.Power market sources of finance calculated based on IJ global asset database project capex&ownership.The asset database capex is incomplete for projects in ASEAN,the numbers represented serve as best estimates based on available data.Much of Malaysias renewable growth in recent years came from the distributed solar PV segment,where smaller project sizes limit the scale that international investors may be seeking Foreign ownership limits,at 49%,continue to act as a barrier to attracting more foreign direct investment Fewer opportunities for wind project investment compared with other Southeast Asia countries,due to more limited resource availability Manage net metering scheme to ensure remuneration balances investment incentive with system financial sustainability Review limits around foreign ownership of renewables projects Put forth a robust framework around direct renewable power purchase to stimulate a market for corporate PPAs Explore efforts to aggregate and securitize distributed renewables projects34Country Name:PhilippinesCross-Cutting Macro IndicatorsPopulation(mm):112GDP Per Capita(USD,3-yr CAGR):10344(3.38%)Trailing 12M Currency Movement(IDR/USD):-5.71%Sovereign Debt Rating(S&P):BBB 10Y Gov.Bond Yield:4.30%Sustainable Debt Issuance(USD,3-yr CAGR):5.86bn,(28.84%)FDI net(USD,3-yr CAGR):10.5 bn(1.9%)FDI%of GFCF:12.0%Energy Subsidies(Yes/No,Type,USD):NoFuel net imports(USD):14.5 bnCO2 Emissions(per capita,3-yr CAGR):1.36t,(2.7%)2030 GHG Reduction Target:2.71%(unconditional),72.29%(conditional)Net-Zero Target:NoCarbon Pricing:NoPower Generation Investment Sources of FinancePower Market Investment FrameworkRank Renewable Power$MillionFossil Fuel Power$MillionOil&Gas$Million1ACEN 604First Gen Corporation 1,299Udenna 2,0252Government of The Philippines 570Government of The Philippines 1,129First Gen Corporation 1,0003Energy Development Corporation 543San Miguel Corporation 1,000 Philippine National Oil Com-pany 4504SN Power 425 Ayala Corporation 900Energy World Corporation 1305Aboitiz Power Corp 216Electricity Generating Public Co 854Otto Energy 95Market Structure:Wholesale Market Pricing:Mostly set through long-term contracts Grid Ownership:Fully public(Concesssions for operation and maintenance)Generation Ownership:Mix of public and privateTotal Power Capacity GW:26.3Renewables Capacity GW and%share:6.3/24%Renewables Capacity Target:35%by 2030Residential Commercial and public servicesIndustry TransportPower Demand By End-Use Sector(TWh)Electricity Capacity2021 Generation by Technology(104 TWh)Planned 2030 Generation by Technology(195 TWh)based on PEP2022-2040 Annual Capacity Additions By Technology(MW)Power Market Fundamentals55%Coal22%Oil&Gas7%Hydropower11%Geothermal1%Bioenergy4%Solar PV Wind45%Coal20%Oil&Gas8%Hydropower8%Geothermal19%Bioenergy,Solar,WindCoal Fleet Age Avg.:13Peak Demand GW:16Reserve Margin:25%Annual T&D Loss:9.57 152015202120212020202020192019201820182017201720162016Coal Oil&Gas Hydropower Solar PVWind Bioenergy Geothermal02040608010005001000150020002500300035Remuneration Mechanisms Renewable Power and Key Enabling TechnologiesMain Drivers,Challenges and Priorities for InvestmentSourcesNotesTechnologyMechanismCeiling Price Level(USD),lifetime avg.DurationCurrency of PaymentInflation AdjustmentGrid onnection and LandOther featuresSolar PV(utility-scale)FIT gradually replaced by competitive auction with ceiling priceUSD 68-163/MWh20 yearsPHP/kWhNoDeveloper responsibilityFIT rates revised upwards periodically/No revision for the auction mechanismSolar PV(distributed)Net meteringExported power receives 100%of retail tariff(with capacity limited to 100kw)N/APHP/kWhNoDeveloper responsibilityTax incentives,accelerated depreciation,local contentOnshore WindFIT gradually replaced by competitive auction with ceiling priceUSD 111-149/MWh20 yearsPHP/kWhNoDeveloper responsibilityFIT rates revised upwards periodically/No revision for the auction mechanismHydropower(1 MW)FIT gradually replaced by competitive auction with ceiling priceUSD 101-108/MWh20 yearsPHP/kWhNoDeveloper responsibilityFIT rates revised upwards periodically/No revision for the auction mechanismBiomass(1 MW)FIT gradually replaced by competitive auction with ceiling priceUSD 93-118/MWh20 yearsPHP/kWhNoDeveloper responsibilityFIT rates revised upwards periodically/No revision for the auction mechanismBiomass (1 MW)Competitive auction with ceiling priceUSD 81-111/MWh,varies by size and location30 yearsIDR with indexation to USDNoDeveloper responsibilityTax incentives,accelerated depreciation,local contentInvestment&Return DriversChallengesPolicy and Market Priorities 75%CO2 emission reductions by 2030;Philippines Energy Plan(PEP)adds 22 GW of renewables by 2030,three times the currenly installed capacity Falling technology costs have improved competitiveness of renewables,especially solar projects which were able to bid at record low prices during the GEAP first auction round The first implementation,in 2022,of a tariff scheme based on competitive auctions with ceiling prices has the potential to enhance the attractiveness and bankability of projects for international developpers Foreign ownership restrictions on solar,wind and hydro assets were lifted in late 2022 and should be conducive to increased capital flows in the country A moratorium on building new coal power plants entered into force in 2020 and has been renewed in 2022,paving the way for more renewables integrationIEA:Energy Subsidies,CO2 Emissions,Power Demand by end-use sector,Renewable power annual capacity additions by technology,Electricity generation by technology(2021),Total Installed Capacity(Fossil fuel power based on calculations from S&P Platts),Renewable Power Capacity,Coal Fleet Age(Based on calculations from S&P Platts),Annual T&D LossesS&P(Platts):Fossil fuel power annual capacity additions by technology IMF:Population,GDP Per CapitaBloomberg:Trailing 12M currency movement,10Y Gov.yield,Sustainable Debt IssuanceIJ Global:Power market sources of finance World Bank,UN:FDI,GFCF,Fuel net importsGovernment of the Philippines:2030 GHG reduction target,Net-Zero target,Carbon pricing,Planned 2030 electricity generation,Peak demand,Reserve Margin,Renumeration Mechanisms1.FDI,GFCF,Energy Subsidies,Fuel net imports,Total Power Capacity,and Renewables Capacity current as of 2021 year end,all other values current as of 2022 year end unless otherwise specified;2.All$values in USD;3.Bond yields in local currency;4.CO2 emissions taken from 2020 real IEA data and extrapolated based on GDP growth rate from IMF data to 2022;5.Power market sources of finance calculated based on IJ global asset database project capex&ownership.The asset database capex is incomplete for projects in ASEAN,the numbers represented serve as best estimates based on available data.The cost of electricity is high in the country due to historical lack of competition,high T&D losses and grid integration challenges Although global technology costs have come down,the cost of financing remains relatively high and renewables project costs remain elevated due to local content provisions still recently in force(60%)Existing high FIT levels compared to auction ceilings might deter investors to channel funds to new renewables capacity,especially in solar The incentives mechanisms seem unfair for hydropower generation which sees FIT and auction ceilings below its estimated LCOE Despite a sizable generation potential,geothermal power is not covered by the FIT,not eligible to participate in auctions and is given low priority access to the grid Renegotiate inflexible thermal power plant contracts and accelerate early retirements of coal Decrease the FIT levels as fast as possible to benefit from cost reductions Accelerate the pace of renewables auctions,and include development support for land acquisition and feasibility studies,to create a more robust pipeline of projects Simplify the land acquisition and permitting process and include geothermal in renewables auctions Boost financing options through enhanced provision of international blended finance mechanisms and continued cultivation of a domestic market for sustainable finance Consider implementing a carbon price on fossil fuel power generation,with appropriated re-distribution mechanisms36Country Name:SingaporeCross-Cutting Macro IndicatorsPopulation(mm):5GDP Per Capita(USD,3-yr CAGR):131426(8.66%)Trailing 12M Currency Movement(IDR/USD):2.23%Sovereign Debt Rating(S&P):AAAu10Y Gov.Bond Yield:2.98%Sustainable Debt Issuance(USD,3-yr CAGR):24.13bn,(13.37%)FDI net(USD,3-yr CAGR):105.5 bn(9.1%)FDI%of GFCF:114.7%Energy Subsidies(Yes/No,Type,USD):NoFuel net imports(USD):29.4 bnCO2 Emissions(per capita,3-yr CAGR):10.8t,(10.91%)2030 GHG Reduction Target:2005 intensity by 36%,peaking at 60Mt total emissions by 2030Net-Zero Target:Net-zero,2050Carbon Pricing:Yes$3.75/t on facilities that emit 25 ktCO2e or morePower Generation Investment Sources of FinancePower Market Investment FrameworkRank Renewable Power$MillionFossil Fuel Power$MillionOil&Gas$Million1Singapore Power 1,294Keppel 1,000ExxonMobil 6,0002Hyflux 110GMR Group 840Government of Singapore 2,0003Keppel 65 PETRONAS 360Golar LNG 1,3604SembCorp Industries 29Engie 1SK Group 7505Sunseap Group 0 Kansai Electric Power 0 Jiangsu Sanfangxiang Group 625Market Structure:Wholesale Market IPPs Retail Competition Pricing:Set through market competition retail tariff Grid Ownership:Fully public(Concesssions for operation and maintenance)Generation Ownership:Mix of public and privateTotal Power Capacity
5人已浏览
2023-03-29 46页
5星级
国际能源署(IEA):2023年亚美尼亚能源概况报告(英文版)(27页).pdf
Armenia Energy ProfileThe IEA examines the full spectrum of energy issues including oil,gas and coal supply and demand,renewable energy technologies,electricity markets,energy efficiency,access to energy,demand side management and much more.Through its work,the IEA advocates policies that will enhance the reliability,affordability and sustainability of energy in its 31 member countries,11 association countries and beyond.This publication and any map included herein are without prejudice to the status of or sovereignty over any territory,to the delimitation of international frontiers and boundaries and to the name of any territory,city or area.Source:IEA.International Energy Agency Website:www.iea.orgIEA member countries:AustraliaAustriaBelgiumCanadaCzech RepublicDenmarkEstoniaFinlandFranceGermanyGreeceHungaryIrelandItalyJapanKoreaLithuaniaLuxembourgMexicoNetherlandsNew ZealandNorwayPolandPortugalSlovak RepublicSpainSwedenSwitzerlandRepublic of TrkiyeUnited KingdomUnited StatesThe European Commission also participates in the work of the IEAIEA association countries:ArgentinaBrazilChinaEgyptIndiaIndonesiaMoroccoSingaporeSouth AfricaThailandUkraineINTERNATIONAL ENERGYAGENCYArmenia Energy Profile Table of contents PAGE|1 Table of contents Overview.2 Country overview.2 Energy supply and demand.3 Key policies.4 Energy sector governance.6 Regulatory framework.7 Energy statistics.10 Energy security.11 Electricity.14 Natural gas.16 Oil.17 Nuclear.17 Energy system transformation.18 Renewable energy.18 Energy efficiency.20 Environmental protection.23 Climate change.23 Technology research,development and deployment.24 IEA.CC BY 4.0.Armenia Energy Profile Overview PAGE|2 Overview Country overview The Republic of Armenia(Armenia)is a landlocked country in the southern Caucasus region between the Black and Caspian seas,bordered by the Republic of Trkiye(Trkiye)on the west,Georgia to the north,Azerbaijan on the east and Iran to the south.The country is approximately 29 800 km2 with a population of 2.969 million.Yerevan,the capital,is the largest city with 1.092 million inhabitants.Armenias economy has undergone numerous reforms since the economic crisis of the early to mid-1990s.It has evolved from having a Soviet-era centralised structure to a partially market-oriented economy,with privatisation of most enterprises.An influx of foreign capital and funding from donors since the early 2000s has contributed to healthy economic growth,and Armenias real GDP increased 5.72%per year from 2002 to 2021(measured in US dollars at 2017 PPP prices).Real GDP per capita was USD 4 670 in 2021,roughly six times what it was in 2002.Armenias reliance on export-oriented industries and high remittances from the Armenian diaspora(which accounted for 10.5%of GDP in 2021)expose the economy to price and demand fluctuation risks.During the latest global financial crisis,the countrys real GDP fell 15%and poverty rose from 27%in 2008 to 35%in 2011.However,targeted social expenditures and pension increases have induced economic growth,and the poverty level had fallen to 27.0%in 2020.Lacking indigenous resources,Armenia imports natural gas and oil for most of its energy needs(78.6%of total energy supply in 2020),mainly from the Russian Federation(hereafter,“Russia”).Natural gas is imported from Russia via pipeline through Georgia,but also from Iran through a barter agreement under which it exports electricity in exchange.Armenia also trades electricity with Georgia,though volumes are low since the countries networks are not synchronised.Energy interconnections with Azerbaijan and Trkiye are currently inactive for political reasons.Prompted by a severe electricity supply crisis in the mid-1990s,Armenia has revamped its energy sector over the past 20 years.Parts of the sector have been privatised,some companies have been restructured,most households now have access to gas,and cost-reflective tariffs have been introduced.This has led to ample investment in capacity and networks,which has considerably improved IEA.CC BY 4.0.Armenia Energy Profile Overview PAGE|3 reliability;funding came mainly from the donor community,upon which Armenia still relies for support.Energy policy is now focused on developing indigenous energy sources,mainly renewables,and on extending the lifetime of the nuclear reactor that supplies nearly one-third of the countrys electricity.The government has begun to pay more attention to energy efficiency issues,and the second National Energy Efficiency Action Plan(NEEAP-2)was developed in 2020.Armenias regional policy focuses on strengthening its position and broadening market integration.The European Union and Armenia completed negotiations for an Association Agreement and the Deep and Comprehensive Free Trade Area in July 2013;soon after,however,implementation was suspended because Armenia expressed strong interest in joining the Eurasian Customs Union with Belarus,Kazakhstan and Russia.Armenia subsequently became a member of the Eurasian Economic Union in January 2015 with Belarus,Kazakhstan and Russia,and Kyrgyzstan joined in August 2015.It has been an observer to the Energy Community since 2011 and a member of the Eastern Partnership since 2009.Energy supply and demand Production Although Armenias energy demand averages more than 3 Mtoe(3.59 Mtoe in 2020)and the country does not produce any fossil fuels,it manages to cover 27%of energy demand with domestic energy production.This production(0.96 Mtoe in 2020)comes mostly from nuclear and hydro resources.Natural gas dominates the energy mix(59.6%of total energy supply in 2020),but the electricity mix is more diversified.In 2021,Armenia produced 7.7 TWh of electricity,of which natural gas covered 44%(3.4 TWh),hydro and other renewables 30%(2.3 TWh)and nuclear 26%(2.0 TWh).In the Caucasus region,Armenia is the only country producing nuclear energy.Demand Armenias energy demand averages more than 3 Mtoe(3.59 Mtoe in 2020).Energy consumption(final consumption excluding transformation)more than doubled between 2000 and 2020( 136%),and heavily outpaced global demand in the same period( 36%).Total final consumption(TFC)in 2020 was 2.61 Mtoe.Residential and transport consumption were on a par in 2020,with both sectors consuming 0.86 Mtoe(33%of TFC).Households use mainly natural gas and electricity,whereas transport IEA.CC BY 4.0.Armenia Energy Profile Overview PAGE|4 consumption consists of natural gas and oil products.In recent years,transport has also been the main driver of demand growth.Imports/exports All fossil fuels are imported:natural gas represents over 80%of Armenias energy imports(2.147 Mtoe out of 2.8 Mtoe in 2020),followed by oil products(0.63 Mtoe in 2020).Russia is its predominant supplier of natural gas(87.7%in 2021),the rest coming from Iran.Armenia is a net exporter of electricity,although most of it is exchanged for natural gas from Iran.Key policies Armenia relies on imports of natural gas and oil for most of its energy needs,which exposes it to supply risks and dependence on a single supplier.As the government considers energy security and the development of indigenous sources to be of prime importance for the energy sector,renewables and efficiency measures are key areas.To satisfy expected demand growth while increasing reliability,the government aims to increase capacity and promote domestic energy sources.In 2013,the government developed a National Energy Security Concept that outlines strategies for fuel diversification mainly through renewables and nuclear power,building fuel reserves and increasing power generation capacity.Then,in 2014 it approved a Schedule of Activities for 2014-2020 for implementing its security concept.The security concept complements previous energy sector development strategies as part of the 2005 Context for Economic Development to 2025,including the National Programme on Energy Saving and Renewable Energy(2007)and the Ministry of Territorial Administration and Infrastructure(MTAI)Action Plan(2007).The latest energy sector development documents approved by the government of Armenia on 14 January 2021 are the Republic of Armenia Energy Sector Development Strategic Programme to 2040 and the Action Plan to Ensure Implementation of the Republic of Armenia Energy Sector Development Strategic Programme,which outlines the governments vision for least-cost strategies to develop the entire energy system and the measures necessary to implement this strategy.This strategy and its accompanying action plan are Armenias main energy policy documents.Their targets and objectives aim for an energy sector that is:free,competitive and non-discriminatory inclusive and diversified,and energy-independent at the highest level clean and energy-efficient,with development that is sustainable IEA.CC BY 4.0.Armenia Energy Profile Overview PAGE|5 of regional significancereliable and safedigitalised and innovative,science-based and highly technologicalpredictable and transparentaccessible and fair for everyone,including vulnerable groups,and attractive forinvestors.In 2014,the government developed the Scaling-Up Renewable Energy Programme Investment Plan.It is an update of the Renewable Energy Roadmap developed in 2011 and includes comprehensive analyses of renewable energy potential,costs and benefits,and the viability of specific technologies.It also sets targets and objectives for renewable energy to 2025,including a plan for financing.The investment plan describes the first geothermal and solar PV projects,which are being developed by the government and serve as examples for other investors.Nuclear energy accounts for nearly one-third of the electricity supply and is of strategic importance.Therefore,although the existing reactor is old,its service lifetime has been extended to 2026,at which time the government intends to extend its lifetime once again to at least until 2036.This second extension is forecast to require an additional USD 150-million investment.The governments ambitious plan to increase renewables to 66%of the power generation mix by 2036(from 7%in 2012)includes small hydro,wind and solar PV resources,but excludes biofuels.To reach this target,Armenia will need to have 2 185 MW of new renewable energy capacity installed by 2036.Estimated projected capacity additions comprise 50 MW of small hydro and 141 MW of large hydro,500 MW of wind,and 950 MW of solar PV.Energy efficiency measures are based on the government decision of 24 March 2022 on Approving the Programme on Energy Saving and Renewable Energy for 2022-2030,the Action Plan Ensuring Implementation of the First Phase(2022-2024)of the Programme on Energy Saving and Renewable Energy for 2022-2030.Financial assistance from the R2E2 Fund(established in 2006 within the framework of the Energy Efficiency Project with Armenian government support),the World Bank and revolving fund financing,has been used to initiate energy efficiency measures in schools,kindergartens,universities,hospitals and other social and administrative buildings,as well as in municipal street lighting.Regulatory reforms have supported power sector advances since the mid-1990s.A commitment to cost-recovery tariffs has facilitated investment in infrastructure and attracted substantial private-sector investment,resulting in improved reliability,service quality and operational efficiency.IEA.CC BY 4.0.Armenia Energy Profile Overview PAGE|6 Strengthening regional integration is also a key component of Armenias energy policy.In addition to having political disagreements with two of its neighbours,Armenias electricity interconnection with Georgia is not fully functional because their systems are asynchronous,and its connection with Iran is operating under limited conditions.Armenia plans to increase its electricity production to sell more to Georgia and Iran during the summer months,and to rely on electricity imports in the winter if necessary.To synchronise its system with those of its neighbours and provide electricity at competitive prices,Armenia will have to open its relatively closed electricity market.Energy sector governance Executive The Ministry of Territorial Administration and Infrastructure(MTAI)is responsible for developing and implementing energy policy.It develops relevant primary and secondary legislation,as well as investment plans for state-owned enterprises.The regulator for nuclear energy is the State Nuclear Safety Regulatory Committee.The Ministry of Nature Protection oversees the protection and conservation of natural resources and is responsible for environmental impact assessments.It is the designated national authority for projects under the Kyoto Protocols Clean Development Mechanism.The Public Services Regulatory Commission(PSRC)is an independent body responsible primarily for tariff methodology and review,licensing procedures and import/export regulation.The PSRC also regulates water,waste,telecommunications and rail transport.Armenia does not have a dedicated agency for renewable energy policies,so the Renewable Resources and Energy Efficiency(R2E2)Fund is responsible for implementing renewable energy and energy efficiency projects.Legislative Armenias primary energy legislation is the Law on Energy(2001):included in it are provisions for market rules and ownership structure.The law on Energy Saving and Renewable Energy(2004)defines the policy principles for renewables and energy savings,and efficiency licensing and tariffs are regulated mainly by the PSRCs laws on licensing and energy.The Law on the Construction of New Nuclear(2009)legislated construction of a new 1 000-MW nuclear unit and decommissioning of the operating plant.However,IEA.CC BY 4.0.Armenia Energy Profile Overview PAGE|7 for electricity supply security reasons,in 2012 a ten-year extension to 2026 was granted to Unit 2 of the existing plant(commissioned in 1980),provided that rehabilitation work is carried out.Judiciary Armenia has a three-tiered judicial system consisting of courts of first instance,courts of appeal and a Supreme Court.Courts of first instance include the courts of general jurisdiction and the Administrative Court.Courts of general jurisdiction examine all civil and criminal cases,whereas administrative cases are heard by the Administrative Court.Decisions of the courts of general jurisdiction and the Administrative Court can be appealed to the courts of appeal;these include the Civil Court of Appeal,the Administrative Court of Appeal and the Criminal Court of Appeal.The Supreme Court can review and revise rulings of the courts of appeal.Also within the judicial system is the Constitutional Court of Armenia,the countrys highest body of constitutional justice.The Constitutional Court primarily settles disputes,assesses the conformity of laws and regulations with the Constitution,resolves election-related disputes,and assesses compliance of international treaties with the Constitution.Disputes between foreign investors and the Republic of Armenia must be resolved in Armenian courts through the application of domestic legislation,according to the Law on Foreign Investment.In cases of mutual consent,businesses may opt to settle disputes through commercial arbitration either in Armenia or abroad.Arbitration is regulated by the Law on Commercial Arbitration,which provides a sound framework for conducting both domestic and international commercial arbitration in Armenia,and for enforcing awards made in other countries in Armenian courts of arbitration.The government always honours arbitration judgements,and other dispute resolution procedures such as mediation,mini-trials and neutral negotiation are also available in Armenia.The Permanent Arbitration Body of the Chamber of Commerce and Industry was established in 2007 based on the Law on Commercial Arbitration,and Armenia is a signatory to the 1958 Convention on the Recognition and Enforcement of Foreign Arbitral Awards.It is also a signatory to the International Convention on Investment Disputes.Regulatory framework Armenias 2001 Energy Law regulates the power sector.The Energy Law provides basic principles for national policy,but it does not specify the authority of the government or MTAI to make policy decisions,nor does it define MTAIs role in the IEA.CC BY 4.0.Armenia Energy Profile Overview PAGE|8 power sector.At the same time,it describes in detail the authority granted to the PSRC,which is generally in compliance with international best practice.The regulator issues licences for wholesale power market participants,for both import and export transactions;sets the tariffs for generation,transmission and distribution,including end-user tariffs and service fees for the System Operator and Settlement Centre;sets the market rules in co-operation with MTAI;and determines the distribution rules,including connection rules.The regulator also sets tariffs for imported electricity.The PSRC also regulates gas,water,electronic communications and thermal energy.Although energy companies may have more than one licence,the Law on Energy prescribes certain limitations on the size of shareholdings.Tariffs Electricity and natural gas tariffs are regulated by the PSRC on a cost-plus basis that allows a set rate of return for the operators after accounting for fixed and variable costs.The government applies a cost-recovery policy on tariffs,but in recent years the increasing cost of electricity services and government concern about affordability have led to a departure from cost-recovery tariffs,and subsidies and below-cost pricing have increased.The tariff-setting procedure is fully transparent.An operator applies for a tariff review on the official PSRC website,which is then subject to consultation with consumer protection organisations and other interested parties.The PSRC reviews the matter and makes its decisions available on its website;it is expected to make a decision within 80 working days from the date of application for most operators,and 25 working days for small hydropower and other renewable generators.For electricity generators participating in the balancing market controlled by the power system operator,the tariff structure has one-or two-part components(energy or both energy and capacity)for payments;for other generators,a one-part tariff is applied.The gas supply system uses a single tariff structure.At the retail level,electricity rates for residential consumers increased 77%from 2009 to 2021,and natural gas rates rose by 178%from 2005 to 2021.In 2016,the import gas price was reduced from USD 165 per 1 000 m3 to USD 150 per 1 000 m3 under the purchase agreement for Gazprom Armenia.The current gas price at the border is USD 165 per 1 000 m3.The table below presents PSRC gas tariffs in force as of 1 April 2022(inclusive of 20%VAT).IEA.CC BY 4.0.Armenia Energy Profile Overview PAGE|9 Consumer gas tariffs in Armenia Consumer category Time frame Consumption Measurement unit Tariff 1.Sociallyinsecure families For up to 600 m3 per year Armenian drams(AMD)per 1 000 m3 100 000.0 For more than 600 m3 per year AMD/1 000 m3 143 700.0 2.Greenhousefarms in theagriculture sector For 1 November to 31 March inclusive USD/1 000 m3 233.9 For 1 April to 31 October inclusive For up to 10 000 m3 per month AMD/1 000 m3 143 700.0 For consumption of 10 000 m3 and over per month USD/1 000 m3 265.81 3.Agriculturalprocessinginvolvingpreserves,beverages and dairy products USD/1 000 m3 233.9 Consumers not covered in points 1-3AMD/1 000 m3 139 000.0 For up to 10 000 m3 per month AMD/1 000 m3 143 700.0 For 10 000 m3 and over per month USD/1 000 m3 265.81 Electricity rates have a time-of-day element for metered consumption.The introduction of an automated metering and data acquisition system and computerised customer billing have significantly improved collection rates since the mid-2000s.In 2021,collection rates were 100.0%for electricity and 100.6%for gas.Feed-in tariffs Under the Law on Energy,small hydropower plants(HPPs)and other plants generating electricity from renewables are afforded feed-in tariffs for a period of 15 years from their licence date.The tariffs are specified on an annual basis to account for exchange rate fluctuations between the Armenian dram and a foreign currency(USD or EUR).Feed-in tariffs were introduced in 2007,and by January IEA.CC BY 4.0.Armenia Energy Profile Overview PAGE|10 2022,389 MW of small hydropower,4.23 MW of wind power and 56 MW of solar PV had come on line.Technical rules Armenia uses state standards for technical applications.They are aligned with the directives of the International Organization for Standardization(ISO),the International Electrotechnical Commission and the European Committee for Standardization(CEN).With a government resolution in 2012,Armenia was on its way to harmonising its standards with those of the European Union.The National Institute of Standards had worked out an action plan for 2013-2015,including a schedule of harmonisation up to 2020,but Armenia instead joined the Customs Union with Belarus,Kazakhstan,Kyrgyzstan and Russia.This is likely to result in a different set of standards for harmonisation.Energy statistics The National Statistical Service of the Republic of Armenia(ArmStat)is the government institution responsible for collecting and validating energy data.Two statisticians of ArmStats industry division dedicate part of their time to energy statistics,and the MTAI compiles an energy balance from data provided by ArmStat and other sources.Survey data for energy consumption in the transport,industry and construction sectors,as well as for households,are available from 2015 onwards(although a test survey was conducted in 2014).Supply data are collected directly from data providers(the Customs Service of the Republic of Armenia and the main electricity companies).Armenias first official energy balance following international methodology was produced for 2015(although an experimental balance was released for 2014).ArmStat and MTAI co-ordinated its preparation and dissemination.ArmStat shares annual data with the International Energy Agency(IEA)through five joint IEA/Eurostat/UN Economic Commission for Europe questionnaires.All data for Armenia published by the IEA have come directly from ArmStat since 2014,but consumption data were previously estimated by the IEA Secretariat.ArmStat also shares energy data with the Eurasian Economic Commission and the Interstate Statistical Committee of the Commonwealth of Independent States,and it participates in the Joint Organisations Data Initiative(JODI)oil database.The priority in energy data collection is to continue producing and publishing energy balances despite staff constraints,and to further consolidate raw data.IEA.CC BY 4.0.Armenia Energy Profile Energy security PAGE|11 Energy security Resource endowment Armenia has no proven reserves of natural gas or oil,and hard coal deposits are a modest 154 Mt,with resources of 163 Mt and further potential of 317 Mt.It has six known coalfields and some shale oil deposits,but the economic viability of mining these deposits has not been determined.There is currently no coal or shale oil production in the country.Given its more than 400 mostly small,steep mountain rivers of at least 10 km in length,Armenias small hydropower potential is significant.Although small hydro has been the focus of considerable development in recent years,the government is also assessing the potential for other forms of renewable energy.Energy security and diversification Armenias energy security has greatly improved since the gas and power supply crisis in the early to mid-1990s.During the crisis,energy sector management was dysfunctional,losses were extremely high,and the collection rate was below 50%.This resulted in acute supply shortages,with households receiving only a few hours of power per day.Since then,increased natural gas heating,investment in new generation capacity and the network,and improved operational management have restored consistent and uninterrupted supplies of electricity and gas.Electricity and gas demand are expected to continue growing as living standards rise and poverty is reduced.Significant investment will be needed to meet these rising energy needs,as large portions of the electricity and gas networks date to the Soviet era,and infrastructure modernisation is needed to maintain and improve supply reliability.In its Energy Security Concept,the government estimates approximately 1 000 MW will be retired by 2026,so new investments will be required to satisfy growing demand if the country does not want to become even more reliant on imports.The proposed new 1 000-MW nuclear plant accounts for planned new capacity,but financing has not been secured.The sustainability and reduced import dependency offered by renewable energy makes its increased contribution(66%by 2036)a priority,with additional capacities of 191 MW of hydro(small and large),500 MW of wind and 950 MW of solar PV required to meet this target.According to the government,small hydro capacity was 380 MW in 2020,and 50 MW was planned or under construction.IEA.CC BY 4.0.Armenia Energy Profile Energy security PAGE|12 In electricity,regional integration and supply diversity are advancing,with a 400-kV double-circuit high-voltage interconnection with Iran under construction as well as a high-voltage interconnection with Georgia with back-to-back high-voltage direct current connection.These interconnections will strengthen regional integration,expand the market and improve supply reliability,and could serve as additional sources of electricity during shortages.System reliability Energy system reliability in Armenia is now considered adequate,as investments in electricity and gas infrastructure,increased residential access to gas and operational improvements since the mid-1990s have led to significant declines in outages and losses.Network losses in both the gas and electricity sectors are in line with international standards.In the gas sector in 2021,transmission losses were 2.68%and distribution system losses 1.18%;losses are kept relatively low by modern metering devices and a supervisory control and data acquisition system.Closed joint-stock company(CJSC)Electric Networks of Armenia(ENA)has been installing automated metering and data acquisition systems in the 110/35-kV portions of the network since 2003 to improve operations and monitoring,and in 2021 electricity transmission losses amounted to 1.43%while distribution losses were 6.03%.There have also been significant developments in the use of natural gas vehicles(NGVs);in fact,Armenia is one of the leading countries in transport sector natural gas use.The benefits of NGVs are both economic and environmental,owing to their low GHG emissions.At the beginning of 2022,more than 80%of vehicles in Armenia were running on natural gas and the country had 358 gas-charging stations.As Armenia has switched to mainly natural gas consumption across multiple sectors,potential for further fuel switching is minimal.Residential heating and transport rely heavily on natural gas,as mentioned above.However,the development of renewable energy sources,particularly solar,could allow for switching to renewable electricity in both heating and transport in the future.Solar energy is a cost-effective choice and there is strong potential for future investment,as outlined above.Emergency response Emergency response in relation to nuclear power has received increased attention since the Fukushima accident in 2011.Armenia is a party to the Non-Proliferation Treaty,has an Additional Protocol with the International Atomic Energy Agency IEA.CC BY 4.0.Armenia Energy Profile Energy security PAGE|13(IAEA)and has ratified the Comprehensive Nuclear Test Ban Treaty.In 2011,the IAEA inspected its nuclear power station for operational safety,deeming the plant acceptable.Armenia also works closely with the United States in managing nuclear safety.In 2013,the US National Nuclear Security Administration(NNSA)conducted two emergency response training sessions in Armenia,with 28 participants from relevant authorities,civil protection agencies and other specialised parties.The NNSA also provides direct emergency management assistance to Armenia and other countries.Also in 2013,Armenia signed an agreement with Belarus on information exchange and co-operation in nuclear safety and radiation protection.Belarus commissioned its first nuclear power plant(NPP)in 2021,and a number of activities were carried out within the framework of Armenias agreement to assist Belarus.According to a 2008 Energy Charter report,Armenias oil product storage facilities are of adequate capacity,as requirements far exceed annual consumption.Up to 1.2 Mt of light oil products and 0.9 Mt of fuel oil can be stored,but most depots do not comply with modern standards and many need repairs.Meanwhile,upgrades to the Abovyan underground gas storage facility in 2012 doubled its capacity to 135 mcm.Armenia is not under any international obligation to hold oil stocks.Requirements are legislated by the former Soviet laws,and most of the time stock availability is determined by the countrys financial situation rather than by strict adherence to the legislation.Fuel switching From 2002 to 2009,Armenia reduced the share of fuelwood-and electricity-based heating in multi-apartment residential buildings from 90%to 26%and increased gas-based heating from 13%to 71%.The switch to more efficient and affordable heating was driven by key activities of the governments Urban Heating Strategy(UHS)and was financed by donor support.In 2001,urban households relied almost entirely on fuelwood and electricity for heating,so in 2002 the government adopted the UHS as a first step towards efficient,clean,safe and affordable heating.The UHS provided a strategic framework for short-,medium-and long-term development of an affordable and environmentally sustainable urban heating sector.The key factors motivating the rapid switch of urban households to gas-based heating(primarily individual gas boilers)were an improved legal and regulatory framework to support the introduction of gas-based heating;mobilisation IEA.CC BY 4.0.Armenia Energy Profile Energy security PAGE|14 of the private sector to provide heat supply equipment and services;financing for consumers to invest in heat supply systems and capital grants for the poor for gas service connection;and rapidly expanding access to gas throughout the country(see Tajikistans Winter Energy Crisis,p.13,Box 2.4,Fuel Switching in Armenia).Electricity Electricity generation Installed generation capacity is 4 147.2 MW,but available capacity is lower(2 878.7 MW)due to the age and condition of plants:approximately 50%of Armenias capacity is more than 40 years old.The Yerevan thermal power plant was retired in 2010,and the government plans to retire the oldest units of the Hrazdan plant in 2023.Significant investment will therefore be needed to modernise power system assets over the next 10 to 20 years.Baseload electricity is produced from the 407-MW Armenian Nuclear Power Plant(ANPP).The plant was scheduled for retirement by 2016,but its service life has been extended by ten years because of insufficient replacement capacity.Approximately USD 300 million was invested to keep the reactor operating until 2026,and rehabilitation has been completed.Securing financing for the new 1 000-MW replacement plant remains a challenge,so the government intends to continue operating the existing plant until at least 2036,which will require an additional investment of USD 150 million according to forecasts.Output from thermal power plants covers demand at peak periods and baseload power generation when the nuclear plant is offline for maintenance.Part of the electricity generated by the Hrazdan-5 Unit,and all the electricity generated by the Yerevan combined-cycle gas turbine plant,is exported under the gas-for-electricity barter agreement with Iran.Hydropower(including small hydro)from the Hrazdan and Vorotan rivers and from other dams is a stable component of Armenias electricity system and provides daily load regulation with installed capacity of 1 345.6 MW.Construction of the Megri HPP(110 MW)has been postponed with no exact commissioning date.Contracted and financed by Iran,it will be operated by Iran for 15 years and then ownership will be transferred to Armenia under the build-own-operate-transfer model.At just 4.23 MW,wind power is a relative newcomer in Armenias power supply system.IEA.CC BY 4.0.Armenia Energy Profile Energy security PAGE|15 Cross-border interconnections Government policy to enhance energy security in the power sector is directed towards strengthening regional integration to increase trade flows.For instance,during the spring and summer when hydropower generation is high,Armenia could increase exports of electricity to Georgia,which could subsequently pass it on to the Turkish market because Georgia often has surplus electricity during the summer.Alternatively,Georgia could supply Armenia with low-cost electricity from hydropower when markets are favourable.In addition,when Armenias new NPP is operational,it may offer further trade opportunities.More electricity trade would lead to opening of the market and greater competition in the Armenian electricity sector.Armenias electricity network has several cross-border linkages including connections to Georgia and Iran.Electricity trading is currently limited,however,as Georgia and Armenia have asynchronous systems and Armenias market is mostly closed.Electricity trade with Iran is based on a barter agreement,whereby much of the gas imported from Iran is used in power generation at the Yerevan power plant,which in turn exports the power to Iran.According to the PSRC,in 2021 Iran bartered around 0.3446 bcm of gas for 1.034 TWh of Armenian electricity.Interconnections with Azerbaijan and Trkiye exist but are not active.A 65-km,220-kV line and 54.8 km of 110-kV lines connect Armenia with Georgia.The governments of Armenia and Georgia are co-operating to build a 400-kV interconnection:in 2012,the utilities in both countries signed an agreement for parallel operation of their power systems,including the organisation of operational dispatch management and a contract for power supply in emergency situations.The feasibility study was completed in 2013 and construction began in 2017.Collaboration with Iran on electricity market integration focuses on fully developing the existing interconnection via over 80 km of 220-kV transmission lines and a new 400-kV line.With construction beginning in 2017,the interconnection is expectedto be operational by 2023.In the long term,Armenia plans to be actively involvedin developing a Black Sea power ring and north-south synchronised operationrelations(involving Armenia,Georgia,Iran,Russia and other countries).Armeniaalso has idle connections with Azerbaijan and Trkiye.Because much of the electricity network is old and inefficient,significant investment in rehabilitation is needed.Grid infrastructure improvements are carried out as part of government-authorised programmes supported by loans from international donors and investment programmes of individual utilities approved by the PSRC.Five substations have been completely reconstructed in recent years with support from the World Bank and Germanys Kreditanstalt fr Wiederaufbau(Credit Institute for Reconstruction,KfW),and five others were under reconstruction in 2021.IEA.CC BY 4.0.Armenia Energy Profile Energy security PAGE|16 Market structure Armenias electricity market operates under the single-buyer model and includes six large generation companies(private and state-owned),more than 205 small power producers and one transmission system operator(TSO).Generation and transmission operations are unbundled.There is no competitive wholesale electricity market.The one distribution system operator has the exclusive right to buy electricity from the generators at r